7.1 Integration by Parts

Integration By Parts.

Integrals in the form of $\int u d v$ can be solved using the formula $\int u d v=u v-\int v d u$.

1. Example: Evaluate $\int x^{2} e^{x} d x$.

Thinking about the problem:

What technique of integration should I use to compute the integral and why? Have I seen a problem similar to this one before? If so, which technique did I use?

I know that I need to compute an indefinite integral, so I know my answer will include $+C$. To determine which technique I should use, I will focus on the integrand, i.e., $x^{2} e^{x}$. I think I can use the Integration by Parts (IBP) technique in this case. The formula for IBP is given by: $\int u d v=u v-\int v d u$; so to use this technique, I will need expressions for $u, v, d u$, and $d v$. I will take $u=x^{2}$, which leaves $d v=e^{x}$. From these substitutions, I can find $d u$ and v and substitute these expressions into the formula for IBP. I need to check the integral found in the formula when I apply the IBP technique. If this new integral is more difficult to solve than the original integral then I probably made a mistake in my assignment of u and $d v$. Finally, I may need to use IBP again in the new integral found by applying the IBP technique.

Doing the problem:

The problem asks me to compute the integral. I choose to apply the IBP technique. I know the integrand $u d v=x^{2} e^{x}$, and I define $u=x^{2}$ and $d v=e^{x}$. Next, I can compute $d u=2 x$ and $v=e^{x}$ and put my results in a table.

$u=x^{2}$	$d v=e^{x}$
$d u=2 x$	$v=e^{x}$

I can now use the formula $\int u d v=u v-\int v d u$ to find $\int x^{2} e^{x} d x=x^{2} e^{x}-\int 2 x e^{x} d x$.
At this point, I notice that I must use IBP again on $-\int 2 x e^{x} d x=\int-2 x e^{x} d x$. So, I can complete the following table:

$$
\begin{array}{|c|c|}
\hline u=-2 x & d v=e^{x} \\
\hline d u=-2 & v=e^{x} \\
\hline
\end{array}
$$

Using the formula, I can compute $\int-2 x e^{x} d x=-2 x e^{x}-\int\left(-2 e^{x}\right) d x=-2 x e^{x}+$ $\int 2 e^{x} d x$. I can evaluate the integral $\int 2 e^{x} d x=2 e^{x}+C$. Therefore, I put together the pieces to find

$$
\begin{aligned}
\int x^{2} e^{x} d x & =x^{2} e^{x}-\int 2 x e^{x} d x \\
& =x^{2} e^{x}+\int\left(-2 x e^{x}\right) d x \\
& =x^{2} e^{x}-2 x e^{x}+\int 2 e^{x} d x \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+C
\end{aligned}
$$

2. Evaluate $\int x^{2} e^{-3 x} d x$.
(a) State the technique of integration you would use to compute the integral.
(b) Compute the following table:

$u=$	$d v=$
$d u=$	$v=$

3. Evaluate $\int_{0}^{\pi} x \cos (3 x) d x$.
(a) State the technique of integration you would use to evaluate the integral.
(b) Complete the following table:

$u=$	$d v=$
$d u=$	$v=$

(c) Compute the new integral found after applying the Integration By Parts technique (Is this integral more difficult to solve than the original integral?)
(d) Evaluate $\int x \cos (3 x) d x$.
(e) Using part (d), evaluate $\int_{0}^{\pi} x \cos (3 x) d x$.
4. Evaluate $\int_{0}^{\pi} x^{2} \sin x d x$.
5. Evaluate $\int e^{x} \sin (x) d x$ (Hint: You may need to think of the expression as an equation and add or subtract an integral to both sides of the equation).
6. True or False (Provide a justification for your answer). For differentiable $f(x)$,

$$
\int_{0}^{\pi} f(x) \cos x d x=-\int_{0}^{\pi} f^{\prime}(x) \sin x d x
$$

