11.9 Representations of Functions as Power Series

Power Series, Derivatives, and Integrals. If the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence $R>0$, then the function f defined by

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on the interval ($a-R, a+R$) and
(i) $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$
(ii) $\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

Alternating Series Estimation Theorem. If $s=\sum(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies
(i) $b_{n+1} \leq b_{n}$ for all n
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1} .
$$

Geometric Power Series.

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n} \quad|x|<1
$$

1. Example: Find a power series centered at $x=0$ for the following functions and find the interval of convergence of the power series.

$$
\frac{1}{2-5 x}
$$

Thinking about the problem:

Which technique should I use to determine the power series for the function given? Have I seen a problem similar to this one before? If so, which technique did I use?

I see that my function looks very similar to the function $\frac{1}{1-x}$, so I will alter my function to match that form. To make my function look like $\frac{1}{1-x}$, I will factor a 2 out of the denominator so my function looks like $\frac{1}{2(1-5 x / 2)}$. At this point, I think my function is close enough to $\frac{1}{1-x}$ so that I can find a power series. I note that the interval of convergence of the power series of $\frac{1}{1-x}$ is $(-1,1)$, so my power series should have a similar interval of convergence.

Doing the problem:

The problem asks to find a power series of a function. $f(x)=\frac{1}{2-5 x}$ can simply f as follows: I see that

$$
\frac{1}{2-5 x}=\frac{1}{2(1-5 x / 2)}=\frac{1}{2} \cdot \frac{1}{1-5 x / 2}
$$

Using the PS representation $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, then $\frac{1}{1-5 x / 2}=\sum_{n=0}^{\infty}(5 x / 2)^{n}$. So I find that

$$
\frac{1}{2-5 x}=\frac{1}{2} \cdot \frac{1}{1-5 x / 2}=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{5 x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(5 x)^{n}}{2^{n+1}}
$$

I have now found a power series centered at $x=0$ for $\frac{1}{2-5 x}$. Next, I will find the interval of convergence. Since the radius of convergence of $\sum_{n=0}^{\infty} x^{n}$ is $|x|<1$, then the radius of convergence for $\sum_{n=0}^{\infty}\left(\frac{5 x}{2}\right)^{n}$ is $\left|\frac{5 x}{2}\right|<1$, so $|x|<\frac{2}{5}$. Therefore the interval of convergence of $\sum_{n=0}^{\infty}\left(\frac{5 x}{2}\right)^{n}$ is $\left(-\frac{2}{5}, \frac{2}{5}\right)$ and so the interval of convergence of $\sum_{n=0}^{\infty} \frac{(5 x)^{n}}{2^{n+1}}$ is also $\left(-\frac{2}{5}, \frac{2}{5}\right)$.
2. Find a power series centered at $x=0$ for the following functions and find the interval of convergence of the power series.

$$
\frac{1}{1+x^{4}}
$$

Solutions should show all of your work, not just a single final answer.
3. Find a power series centered at $x=0$ for the following functions and find the interval of convergence of the power series.

$$
\frac{1}{(1-x)^{3}}
$$

(a) What is the power series centered at $x=0$ for $\frac{1}{1-x}$? What is the radius of convergence for this power series?
(b) What is the second derivative of $\frac{1}{1-x}$?
(c) What is the power series of the second derivative of $\frac{1}{1-x}$?
(d) What is the radius of convergence of the power series in (c)?
(e) Use (b) and (c) to find the power series of $\frac{1}{(1-x)^{3}}$.
4. Use power series to estimate $\int_{0}^{1 / 2} \frac{d x}{1+x^{4}}$ to within .00001 by the following steps.
(a) Express $\int \frac{d x}{1+x^{4}}$ as a power series, starting with the power series you found in 3 .
(b) Find the radius of convergence of the power series in part a.
(c) Use the previous parts and the Alternating Series Estimation Theorem to estimate $\int_{0}^{1 / 2} \frac{d x}{1+x^{4}}$ to within .00001. Round your estimate to 5 digits.
5. T/F (with justification)

If $\sum_{n=0}^{\infty} c_{n} x^{n}$ has radius of convergence 3 then $\sum_{n=0}^{\infty} c_{n} x^{2 n}$ has radius of convergence 9.

