11.11 Applications of Taylor Polynomials

Taylor polynomial of f at a. The nth degree Taylor polynomial of a function f at $x=a$ is

$$
\begin{aligned}
T_{n}(x) & =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Taylor's Inequality. If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for } \quad|x-a| \leq d
$$

1. Example: Determine the 3rd-degree Taylor polynomial $T_{3}(x)$ for \sqrt{x} at $x=4$ and use Taylor's inequality to estimate the error $\left|\sqrt{x}-T_{3}(x)\right|$ if $|x-4| \leq .5$.

Thinking about the problem:

What formulas should I use to determine the Taylor polynomial and to estimate the error and why? Have I seen a problem similar to this before? If so, what formulas did I use?

To determine the 3rd-degree Taylor polynomial at for \sqrt{x} at $x=4$, I will need to recall that

$$
T_{3}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3} .
$$

I will make a table to determine all of the necessary coefficients. Then I can plug in my coefficients into the equation to find $T_{3}(x)$. To estimate the error, I will need to find M so that $\left|f^{(4)}(x)\right| \leq M$ and use Taylor's Inequality.

Doing the problem:

To find $T_{3}(x)$, I begin by making the following table:

n	$f^{(n)}(x)$	$f^{(n)}(1)$
0	$x^{1 / 2}$	2
1	$\frac{1}{2} x^{-1 / 2}$	$\frac{1}{4}$
2	$-\frac{1}{4} x^{-3 / 2}$	$-\frac{1}{32}$
3	$\frac{3}{8} x^{-5 / 2}$	$\frac{3}{256}$

By the formula for $T_{3}(x)$, I find

$$
\begin{aligned}
T_{3}(x) & =2+\frac{1}{4}(x-4)-\frac{1}{32} \cdot \frac{1}{2!}(x-4)^{2}+\frac{3}{256} \cdot \frac{1}{3!}(x-4)^{3} \\
& =2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3} .
\end{aligned}
$$

To use Taylor's Inequality to find the upper bound of the error of $T_{3}(x)$ on $|x-4|<.5$, I need to find M such that $\left|f^{(4)}(x)\right| \leq M$. I find

$$
\left|f^{(4)}(x)\right|=\left|-\frac{15}{16} x^{-7 / 2}\right| \leq \frac{15}{16}(3.5)^{-7 / 2} \quad \text { on }|x|<.5 .
$$

So

$$
R_{3}(x) \leq \frac{M}{4!}|x-4|^{4} \leq \frac{15}{16}(3.5)^{-7 / 2} \cdot \frac{1}{4!}(.5)^{4} \approx .00001262979,
$$

which is an upper bound to the error $\left|\sqrt{x}-T_{3}(x)\right|$ on $|x-4| \leq .5$.

Solutions should show all of your work, not just a single final answer.
2. Determine the 4th-degree Taylor polynomial $T_{4}(x)$ for $f(x)=\frac{1}{(x-5)^{2}}$ at $x=1$ and use Taylor's inequality to estimate the error $\left|f(x)-T_{4}(x)\right|$ if $|x-1| \leq .5$.
(a) Fill in the following table

n	$f^{(n)}(x)$	$f^{(n)}(1)$
0		
1		
2		
3		

(b) Determine the 4th-degree Taylor polynomial for $\frac{1}{(x-5)^{2}}$ at $x=1$.
(c) Find M such that $\left|f^{(5)}(x)\right| \leq M$ for $|x-1| \leq .5$.
3. Use Taylor's inequality to determine a partial sum for the Maclaurin series of $\cos x$ (with x in radians) that is within .0001 of $\cos 2$.
4. T / F (with justification)

The 2nd-degree Taylor polynomial at 0 for $\sqrt{1+x}$ is $1+(1 / 2) x-(1 / 4) x^{2}$.

