11.11 Applications of Taylor Polynomials

Taylor polynomial of f at a. The *n*th degree Taylor polynomial of a function f at x = a is

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$

Taylor's Inequality. If $|f^{(n+1)}(x)| \leq M$ for $|x-a| \leq d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$.

1. **Example:** Determine the 3rd-degree Taylor polynomial $T_3(x)$ for \sqrt{x} at x = 4 and use Taylor's inequality to estimate the error $|\sqrt{x} - T_3(x)|$ if $|x - 4| \le .5$.

Thinking about the problem:

What formulas should I use to determine the Taylor polynomial and to estimate the error and why? Have I seen a problem similar to this before? If so, what formulas did I use?

To determine the 3rd-degree Taylor polynomial at for \sqrt{x} at x = 4, I will need to recall that

$$T_3(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3.$$

I will make a table to determine all of the necessary coefficients. Then I can plug in my coefficients into the equation to find $T_3(x)$. To estimate the error, I will need to find M so that $|f^{(4)}(x)| \leq M$ and use Taylor's Inequality.

Doing the problem:

To find $T_3(x)$, I begin by making the following table:

n	$f^{(n)}(x)$	$f^{(n)}(1)$
0	$x^{1/2}$	2
1	$\frac{1}{2}x^{-1/2}$	$\frac{1}{4}$
2	$-\frac{1}{4}x^{-3/2}$	$-\frac{1}{32}$
3	$\frac{3}{8}x^{-5/2}$	$\frac{3}{256}$

By the formula for $T_3(x)$, I find

$$T_3(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{32} \cdot \frac{1}{2!}(x-4)^2 + \frac{3}{256} \cdot \frac{1}{3!}(x-4)^3$$
$$= 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3.$$

To use Taylor's Inequality to find the upper bound of the error of $T_3(x)$ on |x-4| < .5, I need to find M such that $|f^{(4)}(x)| \leq M$. I find

$$|f^{(4)}(x)| = \left| -\frac{15}{16} x^{-7/2} \right| \le \frac{15}{16} (3.5)^{-7/2}$$
 on $|x| < .5$.

 So

$$R_3(x) \le \frac{M}{4!} |x-4|^4 \le \frac{15}{16} (3.5)^{-7/2} \cdot \frac{1}{4!} (.5)^4 \approx .00001262979,$$

which is an upper bound to the error $|\sqrt{x} - T_3(x)|$ on $|x - 4| \le .5$.

Solutions should show all of your work, not just a single final answer.

- 2. Determine the 4th-degree Taylor polynomial $T_4(x)$ for $f(x) = \frac{1}{(x-5)^2}$ at x = 1 and use Taylor's inequality to estimate the error $|f(x) T_4(x)|$ if $|x 1| \le .5$.
 - (a) Fill in the following table

(b) Determine the 4th-degree Taylor polynomial for $\frac{1}{(x-5)^2}$ at x = 1.

(c) Find M such that $|f^{(5)}(x)| \leq M$ for $|x-1| \leq .5$.

3. Use Taylor's inequality to determine a partial sum for the Maclaurin series of $\cos x$ (with x in radians) that is within .0001 of $\cos 2$.

4. T/F (with justification)

The 2nd-degree Taylor polynomial at 0 for $\sqrt{1+x}$ is $1 + (1/2)x - (1/4)x^2$.