11.10 Taylor and Maclaurin Series

Taylor series of the function f at a. The Taylor series of the function f at a is

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

Maclaurin Series. For the special case $a=0$ the Taylor series becomes

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

This case arises frequently enough that it is given the special name Maclaurin series.

Important Maclaurin Series.

$$
\begin{array}{rlrl}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} & R & =1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & R & =\infty \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} & R & =\infty \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} & R & =\infty \\
\arctan x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} & R & =1
\end{array}
$$

1. Example: Compute the Taylor series for the function $f(x)=x^{2}+3 x-4$ at $a=1$ and compute the Maclaurin series for the same function.

Thinking about the problem:
Have I seen a problem similar to this one before? If so, what did I do to compute the Taylor series?

To determine the Taylor series for the function $f(x)$, I will make a table with $n, f^{(n)}(x)$, and $f^{(n)}(a)$ for enough n to determine a pattern. Then I will use this pattern to find the series $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$.

Doing the problem:

The problem asks to find the Taylor series for the function $f(x)=x^{2}+3 x-4$ at $a=1$ as well as the Maclaurin series for $f(x)$. This means I will find the Taylor series for $f(x)$ at $a=1$ and the Taylor series of $f(x)$ at $a=0$ (i.e., Maclaurin series). So I will make a table as follows:

n	$f^{(n)}(x)$	$f^{(n)}(1)$	$f^{(n)}(0)$
0	$x^{2}-3 x-4$	$1-3-4=-6$	-4
1	$2 x-3$	$2-3=-1$	-3
2	2	2	2
3	0	0	0
\vdots	\vdots	\vdots	\vdots
n	0	0	0

The Taylor series of f at $a=1$ is given by

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(x-1)^{n}=-6-(x-1)+(x-1)^{2}
$$

and the Taylor series of f at $a=0$ (i.e., Maclaurin series) is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(x-1)^{n}=-4-3 x+x^{2}
$$

Solutions should show all of your work, not just a single final answer.

2. Let $f(x)=\sqrt{x}$.
(a) Can you write a Maclaurin series for f ? Explain why or why not.
(b) Fill in the following table:

n		
0	$f^{(n)}(x)$	$f^{(n)}(9)$
1		
2		
3		
4		

(c) Using the table above write out the Taylor Series for $f(x)=\sqrt{x}$ at $a=9$.
3. Use the formulas for e^{x} and $\arctan x$ to find the Taylor series centered at 0 for the following functions. Specify the radius of convergence of each new series.
(a) $f(x)=e^{3 x}$
(b) $f(x)=\arctan (x / 3)$
4. T/F (with justification)

If $f(x)=1+3 x-2 x^{2}+5 x^{3}+\cdots$ for $|x|<1$ then $f^{\prime \prime \prime}(0)=30$.

