11.10 Taylor and Maclaurin Series

Taylor series of the function f at a. The Taylor series of the function f at a is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

Maclaurin Series. For the special case a = 0 the Taylor series becomes

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$$

This case arises frequently enough that it is given the special name <u>Maclaurin series</u>.

Important Maclaurin Series.

ar

 $\overline{n=0}$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad \qquad R = 1$$
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad \qquad R = \infty$$
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad \qquad R = \infty$$
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad \qquad R = \infty$$
$$\cot x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \qquad \qquad R = 1$$

1. **Example:** Compute the Taylor series for the function $f(x) = x^2 + 3x - 4$ at a = 1 and compute the Maclaurin series for the same function.

Thinking about the problem:

Have I seen a problem similar to this one before? If so, what did I do to compute the Taylor series?

To determine the Taylor series for the function f(x), I will make a table with n, $f^{(n)}(x)$, and $f^{(n)}(a)$ for enough n to determine a pattern. Then I will use this pattern to find the

series
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
.

Doing the problem:

The problem asks to find the Taylor series for the function $f(x) = x^2 + 3x - 4$ at a = 1 as well as the Maclaurin series for f(x). This means I will find the Taylor series for f(x) at a = 1 and the Taylor series of f(x) at a = 0 (i.e., Maclaurin series). So I will make a table as follows:

n	$f^{(n)}(x)$	$f^{(n)}(1)$	$f^{(n)}(0)$
0	$x^2 - 3x - 4$	1 - 3 - 4 = -6	-4
1	2x-3	2 - 3 = -1	-3
2	2	2	2
3	0	0	0
÷	•	:	÷
n	0	0	0

The Taylor series of f at a = 1 is given by

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (x-1)^n = -6 - (x-1) + (x-1)^2$$

and the Taylor series of f at a = 0 (i.e., Maclaurin series) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (x-1)^n = -4 - 3x + x^2.$$

Solutions should show all of your work, not just a single final answer.

- 2. Let $f(x) = \sqrt{x}$.
 - (a) Can you write a Maclaurin series for f? Explain why or why not.
 - (b) Fill in the following table:

n	$f^{(n)}(x)$	$f^{(n)}(9)$
0		
1		
2		
3		
4		

(c) Using the table above write out the Taylor Series for $f(x) = \sqrt{x}$ at a = 9.

3. Use the formulas for e^x and $\arctan x$ to find the Taylor series centered at 0 for the following functions. Specify the radius of convergence of each new series.

(a) $f(x) = e^{3x}$

(b) $f(x) = \arctan(x/3)$

4. T/F (with justification)

If $f(x) = 1 + 3x - 2x^2 + 5x^3 + \cdots$ for |x| < 1 then f'''(0) = 30.