10.3 Polar Coordinates

Polar Coordinates/Cartesian Coordinates.

1. A) To find the Cartesian coordinates of a point when the polar coordinates are known, use:

$$
x=r \cos \theta \quad y=r \sin \theta
$$

2. B) To find the polar coordinates of a point when the Cartesian coordinates are known, use:

$$
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x}
$$

Derivatives.

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\left(\frac{d r}{d \theta} \cdot \sin \theta\right)+r \cos \theta}{\left(\frac{d r}{d \theta} \cdot \cos \theta\right)-r \sin \theta}
$$

1. Example: Here is the plot of the polar equation $r=\sin \theta+\cos \theta$.

Fill in the table below and find the equation of the tangent line to the curve at $(x, y)=$ (0, 0).

θ	$\sin \theta+\cos \theta$	(r, θ)	(x, y)
0			
$\pi / 2$			
π			
$3 \pi / 2$			

Thinking about the problem:

How should I approach this problem? What is it asking me to do? Have a seen a problem similar to this one before? If so, what did I do?

The first part of the question is asking me to fill in a table for values of $r=\sin \theta+\cos \theta$, (r, θ), and (x, y). Using the formulas $x=r \cos \theta$ and $y=r \sin \theta$, I can compute the values in the table. The second part of the question is asking me to find the equation of the tangent line to the curve at $(x, y)=(0,0)$. First, I will need to find for what value θ does $(x, y)=(0,0)$. Then I can find the derivative using the formula

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\left(\frac{d r}{d \theta} \cdot \sin \theta\right)+r \cos \theta}{\left(\frac{d r}{d \theta} \cdot \cos \theta\right)-r \sin \theta}
$$

Finally, I will recall that the equation of a tangent line at the point $\left(x_{0}, y_{0}\right)$ is

$$
y-y_{0}=\frac{d y}{d x}\left(x-x_{0}\right)
$$

I can then find the information I need to find the equation of the tangent line.

Doing the problem:

I can compute the values in the table using the formula $x=r \cos \theta$ and $y=\sin \theta$ to find the following:

θ	$\sin \theta+\cos \theta$	(r, θ)	(x, y)
0	1	$(1,0)$	$(1,0)$
$\pi / 2$	1	$(1, \pi / 2)$	$(0,1)$
π	-1	$(-1, \pi)$	$(1,0)$
$3 \pi / 2$	-1	$(-1,3 \pi / 2)$	$(0,1)$

I find that $(x, y)=(0,0)$ is when $r=\sin \theta+\cos \theta=0$ so $\sin \theta=\cos \theta$, which is true when $\theta=\frac{\pi}{4}$. To find the equation of the tangent line, I find

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}} \\
& =\frac{\left(\frac{d r}{d \theta} \cdot \sin \theta\right)+r \cos \theta}{\left(\frac{d r}{d \theta} \cdot \cos \theta\right)-r \sin \theta}
\end{aligned}
$$

In my formula alone I need to find $\frac{d r}{d \theta}$. Since $r=\sin \theta+\cos \theta$ then $\frac{d r}{d \theta}=\frac{d}{d \theta}(\sin \theta+\cos \theta)=$ $\cos \theta-\sin \theta$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(\cos \theta-\sin \theta) \cdot \sin \theta+(\sin \theta+\cos \theta) \cdot \cos \theta}{(\cos \theta-\sin \theta) \cdot \cos \theta-(\sin \theta+\cos \theta) \cdot \sin \theta} \\
& =\frac{\cos \theta \cdot \sin \theta-\sin ^{2} \theta+\sin \theta \cdot \cos \theta+\cos ^{2} \theta}{\cos ^{2} \theta-\sin \theta \cdot \cos \theta-\sin ^{2} \theta-\cos \theta \cdot \sin \theta} \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta+2 \cos \theta \sin \theta}{\cos ^{2} \theta-\sin ^{2} \theta-2 \sin \theta \cos \theta}
\end{aligned}
$$

Letting $\theta=\frac{\pi}{4}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\cos ^{2}\left(\frac{\pi}{4}\right)-\sin ^{2}\left(\frac{\pi}{4}\right)+2 \cos \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)}{\cos ^{2}\left(\frac{\pi}{4}\right)-\sin ^{2}\left(\frac{\pi}{4}\right)-2 \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)} \\
& =\frac{\frac{1}{2}-\frac{1}{2}+2 \cdot \frac{1}{2}}{\frac{1}{2}-\frac{1}{2}-2 \cdot \frac{1}{2}} \\
& =-1
\end{aligned}
$$

So I can conclude that the tangent line is

$$
\begin{aligned}
y-y_{0} & =\frac{d y}{d x}\left(x-x_{0}\right) \\
y & =-x
\end{aligned}
$$

Solutions should show all of your work, not just a single final answer.
2. Give two additional representations of P in polar coordinates:
(a) $P=\left(2, \frac{\pi}{4}\right)$,
(b) $P=\left(-1,-\frac{\pi}{3}\right)$.
3. Below is a graph of the polar equation $r=\sin (2 \theta)+\cos (2 \theta)$. Fill in the table below for this polar graph.

θ	$\sin (2 \theta)+\cos (2 \theta)$	(r, θ)	(x, y)
0			
$\pi / 2$			
π			
$3 \pi / 2$			
2π			

Based on this table, and additional data if it seems needed, draw arrows on the curve (including on each loop) to indicate the direction of θ as it increases from 0 to 2π.
4. Below is a plot of the polar equation $r=1-2 \sin \theta$.

Find the equation of the tangent line to the curve $r=1-2 \sin \theta$ at $(x, y)=(1,0)$.
5. T/F (with justification)

Every point in the plane besides the origin can be written in polar coordinates (r, θ) with $r<0$.

