
Math 1132 Worksheet 10.2 Name: Discussion Section:

10.2 Calculus with Parametric Curves

Derivative of Parametric Curves.
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Arc Length. If a curve C is described by the parametric equation x = f(t), y = g(t) for
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Surface Area. If the curve given by the parametric equations x = f(t), y = g(t), ↵  t  �

is rotated about the x-axis, where f
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0 are continuous and g(t) � 0, then the area of
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1. Example: On the parametric curve (x, y) = (� sin(2t), cos(2t)), find the points on the
curve with a vertical tangent or a horizontal tangent.

Thinking about the problem:

How should I determine tangents of points on the curve? Have I seen a problem similar

to this one before? If so, how did I approach it?

I know that sin2(2t) + cos2(2t) = 1, so x

2 + y

2 = 1 and I know that my curve should

look like a circle with radius 1 centered at the origin.

x

y

How do I find the Horizontal (HT) and Vertical (VT) tangent lines to the curve? By

definition, HT occur when
dy

dt

= 0 (provided that
dx

dt

6= 0) and VT occur when
dx

dt

= 0

(provided that
dy

dt

6= 0).

Since the curve I am considering is a circle, I should expect the points with a vertical or

horizontal tangent line should be (1, 0), (0, 1), (�1, 0), and (0,�1).



Doing the problem:

Horizontal tangent lines occur when
dy

dt

= 0 provided that
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6= 0. So I need only find

when
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0(t) = 0. I find
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�2 sin(2t) = 0
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2t = sin�1(0)

2t = n⇡ for n = 0,±1,±2, . . .
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So the horizontal tangent lines occur at the points:
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= (0, 1) and (0,�1).

Vertical tangent lines occur when
dx

dt

= 0 and
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dt

6= 0. So to find the vertical tangents,



I find
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0(t) = 0

�2 cos(2t) = 0
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2t = cos�1(0)

2t = n
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So vertical tangent lines occur at the points:
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= (1, 0) and (�1, 0).

Therefore, the vertical and horizontal tangent lines occur at points (1, 0), (�1, 0), (0, 1),
and (0,�1), which is what we predicted earlier.



Solutions should show all of your work, not just a single final answer.

Pictured below is the parametric curve (x, y) = (3� t

2
, t

2+3t). It is a rotated parabola.
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2. Mark the orientation on the curve (direction of increasing values of t).

3. Determine dy/dx in terms of the parameter t.

4. Find the slope of the tangent line at the point on the curve where it crosses the positive
y-axis.

5. Find the point (x, y) on the curve where the tangent line is horizontal. (First, as a reality
check, see which quadrant your answer should be in.)

6. T/F (with justification)

On the parametric curve (x, y) = (t2 � 2t, t3 � 3) the graph is increasing at the point
where t = 1/2.


