### 10.1 Curves Defined by Parametric Equations

1. Example: In the following parametric equations, eliminate the parameter to obtain a single equation only in terms of $x$ and $y$. Then describe the graph it traces.

$$
x=-\sin (2 t), \quad y=\cos (2 t) ; \quad 0 \leq t \leq 2 \pi
$$

## Thinking about the problem:

How should I eliminate the parameter $t$ ? Have I seen a problem similar to this one before? If so, what approach did I use?

I notice that since $x$ and $y$ look like parametric equations of a circle, I should expect the single equation in terms of $x$ and $y$ to look like a circle. To describe the graph, I will see my resulting equation in terms of $x$ and $y$ to find the graph it traces, but use the individual $x$ and $y$ to find the orientation and starting point of my parametrization.

## Doing the problem:

I know that $\sin ^{2}(2 t)+\cos ^{2}(2 t)=(-\sin (2 t))^{2}+(\cos (2 t))^{2}=1$, so replacing $x=-\sin (2 t)$ and $y=\cos (2 t)$, I find the resulting equation $x^{2}+y^{2}=1$ and the equation is only in terms of $x$ and $y$. So I know my graph will be a circle of radius 1 centered at the origin. I know that since $x=-\sin (2 \cdot 0)=0$ and $y=\cos (2 \cdot 0)=1$, the starting point of my parametrization is $(0,1)$. Similarly, I know that $x=-\sin (2 t)$ starts out negative whereas $y=\cos (2 t)$ starts positive, so my orientation will be $x$ starting at 0 and going negative (left) and $y$ starting at 1 and staying positive. Therefore my parametrization is counterclockwise. Finally, since $0 \leq t \leq 2 \pi$, I see that my parametrization traces the circle twice, since $x=-\sin (2 t)$ and $y=\cos (2 t)$ indicates my parametrization goes twice the speed as $\sin (t)$ and $\cos (t)$, which would trace the graph once in $0 \leq t \leq 2 \pi$.

Solutions should show all of your work, not just a single final answer.
2. In the following parametric equations, eliminate the parameter to obtain a single equation only in terms of $x$ and $y$.

$$
x=t^{2}+4, \quad y=3 t^{2} ; \quad 0 \leq t \leq 2 .
$$

(a) Write $t$ in terms of $x$.
(b) Write $t$ in terms of $y$.
(c) Set your answer to (a) and (b) equal to each other.
3. In the following parametric equations, eliminate the parameter to obtain a single equation only in terms of $x$ and $y$.

$$
x=3 \cos t, \quad y=3 \sin t ; \quad 0 \leq t \leq \frac{\pi}{2} .
$$

4. Find a parameterization of the following: a circle centered at the origin with radius 16 , oriented counterclockwise with initial point $(0,16)$.
(a) What are the parametric equations for a circle?
(b) Alter the parametric equations from (a) to trace a circle with radius 16 .
(c) Alter the parametric equations from (b) to be oriented counterclockwise.
(d) Alter the parametric equation from (c) so when $t=0, x=0$ and $y=16$.
5. Find a parameterization of the following: a circle centered at $(-2,-3)$ with radius 8 , oriented clockwise with initial point $(6,-3)$.

## 6. T/F (with justification)

The parametric curve $(\sin t,-\cos t)$ as $t$ increases traces out a circle counterclockwise.

