Math 1152Q), Fall 2017 — model solutions

Week 1 - August 28, 2017

Here are a few problems that are similar to those on the first two weeks’
assignment and quizzes. These written solutions are in the style I'd like to
suggest you write. Credit: T. Chumley, used with thanks.

Problem 1. Compute the limit
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where the equalities labeled 1 are justified by L’Hopital’s rule.
Problem 2. Compute the limit
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Solution 2. Observe that
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where the equality labeled 1 is because In(a) — In(b) = In(a/b) [Note: some
justifications like this one are a judgment call. It would be ok if you just used
the rule of logs without citing it. You should try to err on the side of clarity]
and the equality labeled 2 is due to the fact that the natural log function is
continous at 2 and a theorem about limits and continuous functions (see, for
example, Thm 8 on Sec 2.5).




Problem 3. Compute the limit
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Observe that
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Note lim, o @, = —limy, oo ¢, = 0. Therefore, by the squeeze theorem,

lim,,_ys0 by, = 0.



