Math 1152Q, Fall 2017 - model solutions

Week 1 - August 28, 2017

Here are a few problems that are similar to those on the first two weeks' assignment and quizzes. These written solutions are in the style I'd like to suggest you write. Credit: T. Chumley, used with thanks.
Problem 1. Compute the limit

$$
\lim _{n \rightarrow \infty} n^{2} e^{-n}
$$

Solution 1. Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{2} e^{-n} & =\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}} \\
& \xlongequal{=} \lim _{n \rightarrow \infty} \frac{2 n}{e^{n}} \\
& \stackrel{1}{=} \lim _{n \rightarrow \infty} \frac{2}{e^{n}} \\
& =0
\end{aligned}
$$

where the equalities labeled 1 are justified by L'Hopital's rule.
Problem 2. Compute the limit

$$
\lim _{n \rightarrow \infty} \ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right)
$$

Solution 2. Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right) & \stackrel{1}{=} \lim _{n \rightarrow \infty} \ln \left(\frac{2 n^{2}+1}{n^{2}+1}\right) \\
& \stackrel{2}{=} \ln \left(\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{n^{2}+1}\right) \\
& =\ln (2),
\end{aligned}
$$

where the equality labeled 1 is because $\ln (a)-\ln (b)=\ln (a / b)$ [Note: some justifications like this one are a judgment call. It would be ok if you just used the rule of logs without citing it. You should try to err on the side of clarity] and the equality labeled 2 is due to the fact that the natural \log function is continous at 2 and a theorem about limits and continuous functions (see, for example, Thm 8 on Sec 2.5).

Problem 3. Compute the limit

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n+1} n}{\sqrt{2 n^{3}+\sqrt{n}}}
$$

Solution 3. Let

$$
a_{n}=\frac{-n}{\sqrt{2 n^{3}+\sqrt{n}}}, \quad b_{n}=\frac{(-1)^{n+1} n}{\sqrt{2 n^{3}+\sqrt{n}}}, \quad c_{n}=\frac{n}{\sqrt{2 n^{3}+\sqrt{n}}}
$$

Observe that

$$
a_{n} \leq b_{n} \leq c_{n} \quad \text { for all } n \geq 1
$$

Moreover,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} c_{n} & =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{2 n^{3}+\sqrt{n}}} \cdot \frac{\frac{1}{n^{3 / 2}}}{\frac{1}{n^{3 / 2}}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{1 / 2}}}{\sqrt{2 n^{3}+\sqrt{n}} \sqrt{\frac{1}{n^{3}}}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{1 / 2}}}{\sqrt{\frac{2 n^{3}+\sqrt{n}}{n^{3}}}} \\
& =\frac{\lim _{n \rightarrow \infty} \frac{1}{n^{1 / 2}}}{\sqrt{\lim _{n \rightarrow \infty} \frac{2 n^{3}+\sqrt{n}}{n^{3}}}} \\
& =\frac{0}{\sqrt{2}} \\
& =0 .
\end{aligned}
$$

Note $\lim _{n \rightarrow \infty} a_{n}=-\lim _{n \rightarrow \infty} c_{n}=0$. Therefore, by the squeeze theorem, $\lim _{n \rightarrow \infty} b_{n}=0$.

