Math1152Q, Fall17 - Reading homework Sec 11.4 Limit comparison test

Due Week 3 Friday, Sept 15 (graded on completion) Name:

Exercise 1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+2}
$$

1. (2 mins) Compute the value of $\frac{n+1}{n^{3}+2}$ for $n=100$ and $n=1000$. Explain why the terms $\frac{n+1}{n^{3}+2}$ and $\frac{n}{n^{3}}$ are essentially the same when n is large.
2. (2-8 mins) Let $a_{n}=\frac{n+1}{n^{3}+2}$ and $b_{n}=\frac{n}{n^{3}}=\frac{1}{n^{2}}$. Calculate

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} .
$$

What do you think the value of the limit tells you about the relationship between a_{n} and b_{n} for large values of n ?
3. (2 mins) Go to page 728 Sec 11.4. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is an example of a p -series (in this case, $\mathrm{p}=2$). Does this series converge or diverge? (See the answer near the top of the page).
4. (2-5 mins) What do you think this tells us about the convergence or divergence of $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+2}$? You can write a guess or explain what you think.

Exercise 2. Go to page 729 Sec 11.4.
($2-5$ mins) Write down below the statement of the limit comparison test (copy from the blue box on pg 729).
(5 mins) Read Example 3 for how to use the limit comparison test on the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$
(5-10 mins) Apply the same technique to determine whether the following series converge or diverge:

1. $\sum_{n=1}^{\infty} \frac{1}{5^{n}-4}$
2. $\sum_{n=1}^{\infty} \frac{10^{n}}{3+9^{n}}$
