1. True or False.
(a) If $-1<\alpha<1$, then $\lim _{n \rightarrow \infty} \alpha^{n}=0$.

Justification:
Answer: True. Since $\lim _{n \rightarrow \infty}|\alpha|^{n}=0$, by Squeeze theorem we have $\lim _{n \rightarrow \infty} \alpha^{n}=0$. See Sec 11.1 Ex 11 pg 698 .
(b) If $0 \leq a_{n} \leq b_{n}$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

T
Justification:
Answer: False. Counterexample: $a_{n}=\frac{1}{n^{2}}$ and $b_{n}=\frac{1}{n}$.
(c) if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent, then $\left\{a_{n}+b_{n}\right\}$ is divergent.

Justification:
Answer: False. Counterexample: $a_{n}=(-1)^{n}$ and $b_{n}=(-1)^{n+1}$, but $a_{n}+b_{n}=0$.
(d) if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent, then $\left\{a_{n} b_{n}\right\}$ is divergent.

Justification:
Answer: False. Counterexample: $a_{n}=(-1)^{n}$ and $b_{n}=(-1)^{n+1}$, but $a_{n} b_{n}=-1$.
(e) If $a_{n}>0$ for $n=1,2,3, \ldots$ and $\left\{a_{n}\right\}_{n=1}^{\infty}$ is decreasing, then $\sum a_{n}$ converges.

Justification:
Answer: True by the monotonic sequence theorem, since $\left\{a_{n}\right\}$ is decreasing and bounded by 0 and a_{1}.
(f) The series $\sum_{n=1}^{\infty} n^{-\sin 1}$ converges.

Justification:
Answer: False by p-series test since $\sin 1 \leq 1$.
(g) The series $\sum_{n=1}^{\infty} n^{-\sin 1}$ diverges.

Justification:
Answer: True by p-series test since $\sin 1 \leq 1$.
(h) The series $\sum_{n=1}^{\infty} n^{-\cos 0}$ diverges.

Justification: Answer: True by p-series test since $\cos 0=1$.
(i) If $a_{n}>0$ and $\sum a_{n}$ converges, then $\sum(-1)^{n} a_{n}$ converges

Justification: Answer: True. Why?
(j) The ratio test can be used to determine whether $\sum \frac{1}{n^{4}}$ converges.

Justification: Answer: False. Show computation.
(k) The ratio test can be used to determine whether $\sum \frac{1}{n!}$ converges.

Justification: Answer: True. Show computation.
(l) If $a_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$, then $\lim _{n \rightarrow \infty} a_{n}=0$

Justification:
Answer: True due to Ratio Test and the fact that the terms of a convergent series have limit zero.
(m) If $a_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$

Justification:
Answer: True due to Ratio Test and the fact that the terms of a convergent series have limit zero.
(n) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ is convergent.

Justification:
Answer: False. Counterexample: $\sum \frac{1}{n}$ is divergent.
(o) If $a_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$, then $\lim _{n \rightarrow \infty} a_{n}=0$

Justification:
Answer: False. Counterexample: let $a_{n}=n$. Then $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{n}=1$, but $\lim _{n \rightarrow \infty} a_{n}=\infty$.
(p) $0.99999 \cdots=1$

T
Justification: Answer: True. Show computation by applying the geometric series.
(q) $0.9999 \cdots \neq 1$

Justification:
Answer: False because of the computation from above.
(r) 0.66 is close to $\frac{2}{3}$ but $0.66 \neq \frac{2}{3}$

Justification:
Answer: True. Show the computation which shows that $\frac{2}{3}-\frac{66}{100} \neq 0$.
(s) $0.66666 \ldots$ is close to $\frac{2}{3}$ but $0.66666 \cdots \neq \frac{2}{3}$

T $\quad \mathbf{F}$
Justification:
Answer: False. The geometric series computation shows that $0.66666 \cdots=\frac{2}{3}$
(t) If 200 terms are added to a convergent series, the new series is still convergent

T F
Justification: Answer: True
(u) If 200 terms are removed from a divergent series, the new series is covergent Justification: Answer: False.
2. (7.8 improper integral)
i. When is an integral improper?
ii. Circle all the improper integrals and evaluate. Answer: All are improper except the first integral.

$$
\begin{gathered}
\int_{2}^{3} \sqrt{x-2} \mathrm{dx}, \quad \int_{0}^{1} \frac{27}{x^{5}} \mathrm{dx}, \quad \int_{-1}^{1} \frac{1}{x} \mathrm{dx}, \int_{2}^{\infty}\left(\frac{1}{e^{5}}\right)^{x} \mathrm{dx}, \quad \int_{2}^{\infty} \frac{1}{x^{2}+8 x-9} \mathrm{dx} \\
\int_{0}^{1} \frac{4}{x^{5}} d x \text { ans:divergent, } \int_{0}^{1} \frac{4}{x^{0.5}} d x \text { ans:8, } \int_{2}^{3} \frac{2}{\sqrt{3-x}} d x \text { ans: } 4, \int_{4}^{8} \frac{4}{x \sqrt{x^{2-16}}} d x \text { ans: } \pi / 3, \int_{-7}^{7} \frac{1}{\sqrt{49-x^{2}}} d x . \text { ans: } \pi
\end{gathered}
$$

iii. Write 2 improper (definite) integrals (different from above) so that one is convergent and the other is divergent.
iv. Write 2 proper (definite) integrals that are different from above.
v. Write 2 indefinite integrals.
vi. Determine whether $\int_{0}^{1} 9 x^{2} \ln (x) \mathrm{dx}$ converges or diverges. If it converges, evaluate it.

Answer: -1
3. (WebAssign 9.1 differential equations)
(a) For what values of k does the function $y=\cos (k t)$ satisfy the differential equation $4 y^{\prime \prime}=-9 y$?

Answer: $k=-\frac{3}{2}, k=\frac{3}{2}$
(b) Circle all functions which are solutions to $4 y^{\prime \prime}=-9 y$. (Possibly none or all).

1. $y=-\cos \left(\frac{3 t}{2}\right)$

Answer: Yes
2. $y=\cos \left(\frac{3 t}{2}\right)+1$

Answer: No
3. $y=\sin \left(\frac{3 t}{2}\right)$

Answer: Yes
4. $y=\sin \left(\frac{3 t}{2}\right)+\cos \left(\frac{3 t}{2}\right)$

Answer: Yes
(c) True or false? Every member of the family of functions $y=\frac{4 \ln (x)+C}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime}+x y=4
$$

Answer: True. Show this by substituting y and y^{\prime} into the differential equation.
(d) Find a solution of the differential equation $x^{2} y^{\prime}+x y=4$ that satisfies the initial condition $y(1)=2$.

Answer: $y=\frac{4 \ln (x)+2}{x}$.
(e) Find a solution of the differential equation $x^{2} y^{\prime}+x y=4$ that satisfies the initial condition $y(2)=1$.

Answer: $y=\frac{4 \ln (x)+2-4 \ln (2)}{x}$.
(f) Find a solution of the differential equation $x^{2} y^{\prime}+x y=4$ that satisfies the initial condition $y(3)=1$.

Answer: $y=\frac{4 \ln (x)+3-4 \ln (3)}{x}$.
(g) What can you say about a solution of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$ just by looking at the differential equation? Circle all possibilities.

1. The function y must be equal to 0 on any interval on which it is defined.

Answer: no.
2. The function y must be strictly increasing on any interval on which it is defined.

Answer: no.
3. The function y must be increasing (or equal to 0) on any interval on which it is defined.

Answer: no.
4. The function y must be decreasing (or equal to 0) on any interval on which it is defined. Answer: correct.
5. The function y must be strictly decreasing on any interval on which it is defined. Answer: no.
(h) Verify that all members of the family $y=\frac{2}{x+C}$ are solutions of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$.
(i) Write a solution of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$ that is not a member of the family $y=\frac{2}{x+C}$. Answer: $y=0$
(j) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{2} y^{2} \quad y(0)=0.1$

Answer: $\frac{2}{x+20}$
(k) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{4} y^{2} \quad y(0)=0.2$ Answer: $\frac{4}{x+20}$
(l) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{3} y^{2} \quad y(0)=0.5$

Answer: $\frac{3}{x+6}$
(m) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{6} y^{2} \quad y(0)=0.5$

Answer: $\frac{6}{x+12}$
(n) A population is modeled by the differential equation

$$
\frac{d P}{d t}=1.1 P\left(1-\frac{P}{4000}\right)
$$

1. For what values of P is the population increasing?

Answer: $(0,4000)$. Explanation: You need $1-P / 4000>0$ and $P>0$.
2. For what values of P is the population decreasing?

Answer: $(4000, \infty)$. Explanation: You need $1-P / 4000<0$ and $P>0$.
3. What are the equilibrium solutions?

Answer: $P=4000$ and $P=0$. Explanation: You need $d P / d t=0$.
(o) A function $y(t)$ satisfies the differential equation

$$
\frac{d y}{d t}=y^{4}-8 y^{3}+15 y^{2}
$$

1. What are the constant solutions of the equation?

Answer: $y=0, y=3$, and $y=5$
2. Sketch the polynomial $t^{4}-8 t^{3}+15 t^{2}$. In particular, mark the x-intercepts.
3. For what values of y is y increasing?

Answer: When y is in one of the intervals $(-\infty, 0),(0,3),(5, \infty)$
4. For what values of y is y decreasing?

Answer: When y is in the interval $(3,5)$
4. (9.1 Worksheet)
(a) True or false? Every differential equation has a constant solution. (If true, explain. If false, give a counterexample.)
Answer: False. Counterexample: think of a function $g(y)$ which has no zeros. You can use $\frac{d y}{d x}=g(y)$ as a counterexample.
(b) Consider the differential equation $\frac{d y}{d t}=1-2 y$.
i. Find all constant solution/s.

Answer: $y=1 / 2$
ii. Which of the following is a family of solutions? You may need to circle more than one.

$$
y(t)=1+K e^{-2 t} \quad y(t)=-K e^{-2 t} \quad y(t)=\frac{1}{2}+K e^{-2 t} \quad y(t)=\frac{1}{2}-K e^{-2 t}
$$

Answer: $y(t)=\frac{1}{2}+K e^{-2 t} \quad y(t)=\frac{1}{2}-K e^{-2 t}$
5. (9.3 reading homework)
(a) Draw a rough sketch of a possible solution to the logistic differential equation $\frac{d P}{d t}=5 P\left(1-\frac{P}{8}\right)$. You do not need to solve this differential equation to draw a rough sketch. Hint: Explained in https://wwv.khanacadeny.org/math/
ap-calculus-bc/bc-diff-equations/bc-10gistic-models/e/logistic-differential-equation
6. (9.3 WebAssign)
(a) Find the solution of the differential equation that satisfies the given initial condition.

$$
\frac{d y}{d x}=\frac{x}{y}, \quad y(0)=-9
$$

Answer: $y=-\sqrt{x^{2}+81}$
(b) Find the solution of the differential equation that satisfies the given initial condition.

$$
x y^{\prime}+y=y^{2}, \quad y(1)=-8
$$

Answer: $y=\frac{8}{8-9 x}$
(c) Consider the differential equation $\left(x^{2}+15\right) y^{\prime}=x y$.
i. Find all constant solutions.

Answer: $y=0$
ii. Find all solutions.

Answer: $y=K \sqrt{x^{2}+15}$
(d) The differential equation below models the temperature of a $86^{\circ} \mathrm{C}$ cup of coffee in a $20^{\circ} \mathrm{C}$ room, where it is known that the coffee cools at a rate of $1^{\circ} \mathrm{C}$ per minute when its temperature is $70^{\circ} \mathrm{C}$. Solve the differential equation to find an expression for the temperature of the coffee at time t. (Let y be the temperature of the cup of coffee in ${ }^{\circ} C$, and let t be the time in minutes, with $t=0$ corresponding to the time when the temperature was 86° C.)

$$
\frac{d y}{d t}=-\frac{1}{50}(y-20)
$$

Answer: $y=K e^{-t / 50}+20$. After considering the initial condition, we see that the temperature of the coffee at the time is described by $y=66 e^{-t / 50}+20$.
(e) A tank contains 8000 L of brine with 14 kg of dissolved salt. Pure water enters the tank at a rate of $80 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate.

1. How much salt is in the tank after t minutes?

Answer: $y=14 e^{-t / 100} \mathrm{~kg}$
2. How much salt is in the tank after 20 minutes?

Answer: $14 e^{-0.2} \mathrm{~kg}$. (Around 11.5 kg). You don't need to approximate.
(f) Find the orthogonal trajectories of the family of curves $y^{2}=8 k x^{3}$. Sketch these orthogonal trajectories. Answer: $2 x^{2}+3 y^{2}=C$, a certain family of ellipses.
7. (Sec 10.3 Week 15 Quiz)
(a) Sketch the polar equation $r=\frac{5}{2}$
(b) Sketch the polar equation $\theta=\frac{\pi}{4}$
(c) Convert the polar equation $r=3$ to Cartesian.

Answer: $x^{2}+y^{2}=9$
(d) Convert the polar equation $\theta=\frac{\pi}{3}$.

Answer: $y=\sqrt{3} x$
(e) Convert the polar equation $\theta=\frac{\pi}{6}$.

Answer: $y=\frac{\sqrt{3}}{3} x$
(f) Convert the polar equation $r=9 \cos \theta$ to Cartesian.

Answer: $(x-4.5)^{2}+y^{2}=(4.5)^{2}$
8. Consider the circle $r=6 \cos \theta$ and the cardioid $r=2+2 \cos \theta$.

(a) Mark points on both curves where $\theta=0, \frac{\pi}{4}$, and $\frac{\pi}{2}$.
(b) Shade in the area inside the circle and outside the cardioid.
(c) Find the area (which you shade) inside the circle and outside the cardioid.

Answer: $\int_{0}^{\pi / 3} 2\left(8 \cos ^{2} \theta-1-2 \cos \theta\right) d \theta=4 \pi$.
9. (Sec 10.1, 10.2 Week 12 quiz)
i. (a) Find parametric equations for the top half of the circle centered at $(2,3)$ with radius 5 , oriented clockwise. Answer:

$$
\begin{gathered}
x=2+5 \cos (-t) \\
y=3+5 \sin (-t) \\
\text { for } \pi \leq t \leq 2 \pi
\end{gathered}
$$

(b) Eliminate the parameter to find a Cartesian equation of the curve.
ii. Consider the curve described by the parametric equations

$$
\begin{aligned}
& x=t^{3}+1 \\
& y=2 t-t^{2}, \quad \text { for }-\infty<t<\infty
\end{aligned}
$$

(a) Mark the orientation on the curve (direction of increasing values of t).

(b) Find the area enclosed by the x-axis and the given curve. Answer:

$$
\begin{aligned}
\int_{1}^{9} y \mathrm{dx} & =\int_{t=0}^{t=2} y(t) x^{\prime}(t) d t \\
& =\int_{0}^{2}\left(2 t-t^{2}\right)\left(3 t^{2}\right) d t \\
& =\int_{0}^{2}\left(6 t^{3}-3 t^{4}\right) d t \\
& =\frac{6}{4} t^{4}-\left.\frac{3}{5} t^{5}\right|_{0} ^{2} \\
& =\frac{3(16)}{2}-\frac{3(32)}{5} \\
& =\frac{3(40-32)}{5} \\
& =\frac{24}{5}
\end{aligned}
$$

(c) Perform and describe a reality check by comparing your answer and the graph which has been drawn to scale.
iii. Consider the cycloid which is described by the parametric equations

$$
\begin{aligned}
& x=5(t-\sin t) \\
& y=5(1-\cos t), \quad \text { for } \infty<t<\infty
\end{aligned}
$$

(a) Mark the orientation on the curve (direction of increasing values of t).

(b) Find the area enclosed by the x-axis and one arch of the cycloid. Hint: $d x=5(1-\cos t) d t$. Answer: $3 \pi 5^{2}$
(c) Perform a reality check by comparing your answer and the graph (which is drawn to scale).
10. (Sec 11.10)
i. If f has a power series representation at 4, that is, if $f(x)=\sum_{n=0}^{\infty} c_{n}(x-4)^{n}$ for $|x-4|<R$, then its coefficients are given by the formula $c_{n}=$
.Answer: Theorem 5 on page 760 .

ii. Circle all the true statements and cross out all the false statements, and justify.
(a) If the series $\sum_{n=1}^{\infty} c_{n} x^{n}$ converges for $|x|<R$, then $\lim _{n \rightarrow \infty} c_{n} x^{n}=0$ for $|x|<R$.

Answer: True. See explanation, first sentence of pg 763. Or see Sec 11.2, Thm 6 , pg 713.
(b) If the series $\sum_{n=1}^{\infty} c_{n} x^{n}$ diverges for $x=5$, then $\lim _{n \rightarrow \infty} c_{n} x^{n} \neq 0$ for $x=5$.

Answer: False. A counterexample: $c_{n}=\frac{1}{n 5^{n}}$. See Ex. 9 Sec 11.2, pg 713.
iii. Find the Maclaurin series for $f(x)=6(1-x)^{-2}$ using the definition of a Maclaurin series. (You may assume that $f(x)$ has a power series expansion). Find the associated radius of convergence.
Answer: Use Taylor series theorem/formulas $5,6,7$ on pg 760 . Follow Example 8 but replace $(1+x)^{k}$ with $(1-x)^{-2}$. The Maclaurin series is $\sum_{n=0}^{\infty} 6(n+1) x^{n}{ }^{n}$ Use Ratio Test to find the radius of convergence $R=1$.
iv. Use a Maclaurin series given in this table http://egunawan.github.io/fall17/quizzes/11_10_table01.pdf (printed on the next page) to obtain the Maclaurin series for the function $f(x)=8 e^{x}+e^{8 x}$. Find the radius of convergence.
Answer: Use the table to get $e^{x}=\sum_{n=1}^{\infty} x^{n} n!$. Apply the Composition Theorem with $h(x)=8 x$ and $f(t)=e^{t}$ to get $e^{8 x}=\sum_{n=1}^{\infty} \frac{(8 x)^{n}}{n!}$. Apply 'sum' theorem
for series (Pg 714 Sec 11.2$)$ to get the sum $\sum_{n=0}^{\infty}\left(8+8^{n}\right) \frac{x^{n}}{n!}$. The series is convergent for all real numbers .
v. Evaluate the indefinite integral $\left(8 \int \frac{e^{x}-1}{5 x} \mathrm{dx}\right)$ as an infinite series.

Answer: Read Example 11 pg 768 - 769 for similar problem. This answer gives the Maclaurin series but you can choose a different Taylor series centered not at 0 . First either use the table or directly evaluate the Maclaurin series for $e^{x}-1=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)-1=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$. Multiply this Maclaurin series by $\frac{1}{x}$ to get $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!} \cdot$ Apply term-by-term integration to get final answer, $\frac{8}{5} \sum_{n=1}^{\infty} \frac{x^{n}}{(n) n!}+C$.
vi. Find the Maclaurin series for $f(x)=e^{-4 x}$ using the definition of a Maclaurin series. Don't use the table. (You may assume that $f(x)$ has a power series expansion). Find the associated radius of convergence R.
Answer: Follow Example 1 pg 760 but replace x with $-4 x$. You get $e^{-4 x}=\sum_{n=0}^{\infty}\left(\frac{(-4)^{n}}{n!}\right) x^{n}$. The series is convergent for all real numbers
11. (11.3 Integral test and p-series, 11.8 geometric series test/ratio test to find interval of convergence, 11.9 power series representation of a function, Week 8 quiz)
12. (Section 11.3) Suppose f is a continuous, positive, and decreasing function on $[1, \infty)$ and $a_{k}=f(k)$. By drawing a picture, rank the following three quantities in increasing order:

$$
\int_{1}^{6} f(x) \mathrm{dx} \quad \sum_{k=1}^{5} a_{k} \quad \sum_{k=2}^{6} a_{k}
$$

13. (Sec 11.3 p-series) The Riemann zeta-function ζ ("zeta") is defined by

$$
\zeta(x):=\sum_{n=1}^{\infty} \frac{1}{n^{x}} .
$$

It is used in number theory to study the distribution of prime numbers.
(a) What is the domain of the function ζ ? (That is, for what values of x is this function defined?)

Answer: Sec 11.3, page 722 .
(b) Euler computed $\zeta(2)$ to be $\frac{\pi^{2}}{6}$. (See page 720, sec 11.3). Use this fact to find the sum of each series below.

$$
\sum_{n=3}^{\infty} \frac{1}{n^{2}} \quad \sum_{n=1}^{\infty} \frac{1}{(5 n)^{2}} \quad \sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

14. (Section 11.8 power series)
(a) What is a power series? (See Sec 11.8, top of page 747)
(b) In most cases, how do you find the radius of convergence of a power series? Answer: to ratio test usually works. In certain situations, geometric series test works. See the Examples 1-5 in Sec 11.8, pg 747-750
(c) Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{n(x+2)^{n}}{3^{n+1}} . \quad \text { Answer: see Example 5, pg } 750
$$

(d) Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=0}^{\infty} n!x^{2 n} . \quad \text { Answer: see Example 1, pg } 747
$$

(e) Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n^{5}} . \text { Answer: same } R \text { as Ex } 2, \operatorname{pg} 747 \text {, but both endpoints are included. }
$$

(f) Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!} . \quad \text { Answer: same answer as Example 3, pg } 748
$$

15. (Sec 11.9 WebAssign finding interval of convergence) For each function, find a power series representation and determine the interval of convergence.
(Check your work with WolframAlpha. Type "series representation of ...")
(a) $f(x)=\frac{1}{3+x}($ see Sec 11.9 Example 2)
(b) $f(x)=\frac{x^{3}}{5+x}($ see Sec 11.9 Example 3)
(c) $f(x)=\frac{x}{1+10 x^{2}}$ (a variation of Sec 11.9 Example 3)
16. (Sec 11.9 WebAssign differentiation and integration of power series) For each function, find a power series representation. Determine the radius of convergence. (You do not need to determine the interval of convergence)
(a) $f(x)=\frac{1}{(2+x)^{2}}$ (a variation of Sec 11.9 Ex 5)
(b) $f(x)=\ln (1+x)($ see Sec 11.9, Ex 6)
(c) $f(x)=\arctan (x)($ see Sec 11.9, Ex 7$)$
(d) $\int \frac{1}{1+x^{7}} \mathrm{dx}($ see $\operatorname{Sec} 11.9, \operatorname{Ex} 8)$
(e) $\int \frac{x}{1-x^{7}} \mathrm{dx}($ a variation $\operatorname{Sec} 11.9, \operatorname{Ex} 8)$
17. (Ch 7 Integration methods) Decide whether the best method of integration is integration by parts, u-substitution, or trig substitution. Explain the first key step/s of evaluating the integrals (There often are more than one right answer).
(a) $\int_{0}^{4} \frac{\ln (x)}{\sqrt{x}} \mathrm{dx}$

Answer: Integration by parts with $u=\ln (x)$ and $d v=\frac{1}{\sqrt{x}}$.
(b) $\int \frac{1}{x \ln (x)} d x$

Answer: u-substitution for $\ln (x)$. Get $\ln (\ln (x))+$ Constant.
(c) $\int_{1}^{2} \ln (x) \mathrm{dx}$

Answer: Integration by parts with (the only option) $u=\ln (x)$ and $d v=\mathrm{dx}$
(d) $\int x e^{0.2 x} \mathrm{dx}$

Answer: Integration by parts with $u=x$ and $d v=e^{0.2 x} \mathrm{dx}$
(e) $\int_{0}^{1} e^{x} \sin (x) d x$ \qquad
Answer: Integration by parts with either $u=e^{x}$ and $d v=\sin (x) \mathrm{dx} \mathrm{OR} d v=e^{x} \mathrm{dx}$ and $u=\sin (x)$
(f) $\int \frac{1}{x^{2}+2 x+4} d x$

Answer: Complete the square, then use inverse trig substitution with $u=\sqrt{3} \tan (\theta)$ or $u=\sqrt{3} \cot (\theta)$
18. Evaluate $\int \frac{1}{x^{2}+25} d x$

Answer: Do inverse trig substitution $x=5 \tan (\theta)$ so that you get $\int \frac{1}{x^{2}+25} \mathrm{dx}=\int \frac{1}{5} \theta d \theta=\frac{1}{5} \arctan \left(\frac{x}{5}\right)+c$.
19. (Section 7.4 WebAssign partial fraction decomposition)
(a) Evaluate $\int \frac{10}{(x+5)(x-2)} \mathrm{dx}$

Answer: $\frac{10(\ln (x-2)-\ln (5+x))}{7}$
(b) Evaluate $\int \frac{x+4}{x^{2}+2 x+5} \mathrm{dx}$
(c) Evaluate $\int \frac{7 x^{2}-6 x+16}{x^{3}+4 x} \mathrm{dx}$
20. (7.8 improper integral, 11.3 integral test)
i. (a) Find the values of p for which the integral $\int_{e}^{\infty} \frac{6}{x(\ln x)^{p}} \mathrm{dx}$ converges. Evaluate the integral for these values of p.

Answer: u-substitution. Check cases $p=1, p<1$, and $p>1$. $p>1$ diverges
(b) Determine whether

$$
\int_{2}^{\infty}\left(\frac{1}{e^{5}}\right)^{x} \mathrm{dx}
$$

is convergent or divergent. If it is convergent, evaluate it.
Answer: $1 /\left(510^{e}\right)$
(c) Determine whether

$$
\int_{2}^{\infty} \frac{1}{x^{2}+8 x-9} \mathrm{dx}
$$

is convergent or divergent. If it is convergent, evaluate it.
Answer: You can use partial fraction decomposition. $\ln (11) / 10$
(d) Determine whether $\int_{0}^{1} 4 x^{-5} \mathrm{dx}$ is convergent or divergent. If it is convergent, evaluate it.

Answer: divergent
(e) Determine whether

$$
\int_{0}^{1} \frac{4}{x^{0.5}} \mathrm{dx}
$$

is convergent or divergent. If it is convergent, evaluate it.
Answer: 8
(f) Determine whether

$$
\int_{2}^{3} \frac{2}{\sqrt{3-x}} \mathrm{dx}
$$

is convergent or divergent. If it is convergent, evaluate it.
Answer: 4
ii. (a) Evaluate the integral $\int_{1}^{\infty} \frac{3}{x^{6}}$ dx. Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} \frac{3}{n^{6}}$ is convergent or divergent.
Answer $=3 / 5$
(b) Evaluate the integral

$$
\int_{1}^{\infty} \frac{1}{(4 x+2)^{3}} \mathrm{dx}
$$

Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} \frac{1}{(4 n+2)^{3}}$ is convergent or divergent.
Answer $=1 / 288$
(c) Evaluate the integral $\int_{1}^{\infty} \frac{1}{\sqrt{x+9}} \mathrm{dx}$. Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} \frac{1}{\sqrt{n+9}}$ is convergent or divergent.
Answer: divergent
(d) Evaluate the integral $\int_{1}^{\infty} x e^{-9 x} \mathrm{dx}$. Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} n e^{-9 n}$ is convergent or divergent.
Answer: $10 / 81 e^{9}$
(e) Are the conditions for the Integral Test satisfied for the series $\sum_{1}^{\infty}(\cos n)^{2}+\frac{1}{n} \mathrm{dx}$?

Answer: No. Why?
(f) Are the conditions for the Integral Test satisfied for the series $\sum_{1}^{\infty} \frac{(\cos n)^{2}}{n} \mathrm{dx}$? Answer: No. Why?
21. (Week 4 quiz)
i. (a) Consider $\sum \frac{5^{n}}{n!}$ and $\sum \frac{n!}{n^{n}}$ (similar to Sec 11.6 Example 5 pg 741).
(b) Show your work for attempting to use the ratio test to this series to determine whether it converges or diverges.
Answer:
For $a_{n}=\frac{5^{n}}{n!}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{5^{n+1}}{(n+1)!} \frac{n!}{5^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{5}{n+1} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{5}{n}}{1+\frac{1}{n}} \\
& =\frac{\lim _{n \rightarrow \infty} \frac{5}{n}}{1+\lim _{n \rightarrow \infty} \frac{1}{n}} \\
& =0 .
\end{aligned}
$$

For $a_{n}=\frac{n!}{n^{n}}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{(n+1)}} \frac{n^{n}}{n!} \\
& =\lim _{n \rightarrow \infty}(n+1) \frac{n^{n}}{(n+1)^{(n+1)}} \\
& =\lim _{n \rightarrow \infty}(n+1) \frac{n^{n}}{(n+1)^{n}(n+1)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n} \\
& =\frac{1}{e} \text { as given at the top of the page }
\end{aligned}
$$

See also book's solution for a similar-looking series Sec 11.6 Example 5 pg 741.
(c) If the ratio test is conclusive, determine whether the series is convergent or divergent. Otherwise, state that the ratio test is inconclusive.
Answer:
The two series converge by the ratio test since $0<1$ and $\frac{1}{e}<1$.
ii. Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ and $\quad \sum_{n=4}^{\infty} \frac{1}{2^{n}-9}$ (from Sec 11.4 Examples 2 and 3) converge Answer:
iii. Determine whether the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$ and $\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}$ (from Sec 11.4 Examples 1 and 4) converge. Answer:
22. (11.2: geometric and harmonic series, 11.4: comparison test, 11.6: ratio tests) STRATEGY TIPS:
\checkmark The ratio test usually works when the term contains factorial like $(n+3)$! or exponents like $7^{n}, \frac{1}{7^{n}}$.
\boldsymbol{x} The ratio test will not work with series with ONLY p-series-like terms, for example, $\sum \frac{n^{2}+4}{\sqrt{n^{5}-1}}$. Convince yourself.
$\boldsymbol{J} \boldsymbol{X}$ Only use one of the comparison tests are when the series looks like the geometric series $\sum r^{n}$, or the p-series $\sum \frac{1}{n^{p}}$.
You can check all the 'does [blank] converge' questions below with WolframAlpha.
Show whether each series $\sum a_{n}$ converges. For full credit you should give

- The series $\sum b_{n}$ and an explanation why $\sum b_{n}$ converges/diverges (if you use Comparison or Limit Comparison test)
- An inequality or limit computation
- If using the Comparison Test, give an inequality of the form $a_{n} \leq b_{n}$ or $a_{n} \leq b_{n}$
- If using the Limit Comparison Test, compute $\lim _{n \rightarrow \infty} a_{n} / b_{n}$
- A conclusion statement.
i. (Book examples) Pg 728-730: Sec 11.4 Ex 1,2,3,4; Pg 740-741 Sec 11.6 Ex 3, 5
ii. (a) $\sum_{n=2}^{\infty} \frac{n^{3}}{n^{4}+1}$

Answer: divergent. Let $b_{n}=1 / n$ and use LCT.
(b) $\sum_{n=1}^{\infty} \frac{6^{n}}{5^{n}-1}$

Answer: divergent. Use Divergence test.
(c) $\sum_{n=1}^{\infty} \frac{(2 n-1)\left(n^{2}-1\right)}{(n+1)\left(n^{2}+4\right)^{2}}$

Answer: convergent. Let $b_{n}=1 / n^{2}$ and use LCT.
iii. (Sec 11.4)
(a) Determine whether the series $\sum_{n=1}^{\infty} \frac{n+6^{n}}{n+2^{n}}$ converges or diverges.

Answer: $\sqrt{ }$ LCT attempt 1: You try LCT with $\sum\left(\frac{6}{2}\right)^{n}$ and it works.
\checkmark LCT attempt 2: LCT with $\sum \frac{1}{n}$ also works. But this may not be the first thing that comes to your mind.
\checkmark Divergence test: the terms are increasing, so this test works.
\checkmark Comparison test: find a big enough constant A so that $a_{n}>A\left(\frac{6}{2}\right)^{n}$.
\checkmark Ratio test: you see powers, so you try the ratio test. The ratio $\frac{a_{n+1}}{a_{n}}$ goes to $6 / 2$.
(b) Determine whether the series $\sum_{n=1}^{\infty} \frac{2 n+3^{n}}{2 n+7^{n}}$ converges or diverges.

Answer: $\sqrt{ }$ LCT attempt 1: You try LCT with $\sum\left(\frac{3}{7}\right)^{n}$ and it works.
\checkmark LCT attempt 2: LCT with $\sum \frac{1}{n^{2}}$ also works, but this may not be the first thing that comes to your mind. X Divergence test: inconclusive.
\checkmark Comparison test: find a big enough constant A so that $a_{n}<A\left(\frac{3}{7}\right)^{n}$.
\checkmark Ratio test: you see powers, so you try the ratio test. The ratio $\frac{a_{n+1}}{a_{n}}$ goes to $3 / 7$.
(c) Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n^{2}-1}{6 n^{4}+7}$ converges or diverges. (Hint: compare with a p-series and use one of the comparison tests. Would the ratio test be conclusive? See strategy above.)
(d) Determine whether the series $\sum_{n=6}^{\infty} \frac{n-5}{n 7^{n}}$ converges or diverges. (Hint: compare with a geometric series. You can also try the ratio test because you see powers $\left.\left(\frac{1}{7}\right)^{n}\right)$
(e) Determine whether the series $\sum_{n=1}^{\infty} \frac{5^{n}}{n 7^{n}}$ converges or diverges. (Hint: compare with a geometric series. You can also try the ratio test because you see powers $\left.\left(\frac{5}{7}\right)^{n}\right)$
(f) Determine whether the series $\sum_{n=1}^{\infty} \frac{5^{2 n}}{n 7^{n}}$ converges or diverges.

Answer:
XLCT with geometric series $\sum\left(\frac{25}{7}\right)^{n}$ is inconclusive.
\checkmark LCT with comparing with the harmonic series $\sum \frac{1}{n}$ works.
\checkmark You try the ratio test because you see powers $\left(\frac{25}{7}\right)^{n}$.
(g) Determine whether the series $\sum_{n=1}^{\infty} \frac{n+8}{n \sqrt{n}}$ converges or diverges.

Answer:
\checkmark LCT: you compare with a p-series because it looks like one.
\boldsymbol{x} Ratio test: you try ratio test and it's inconclusive. Recall that the ratio test never works for any series that looks ONLY like a p-series.
iv. (Divergence Test Sec 11.2)
(a) True or false? If a_{n} does not converge to 0 , then the series of $\sum_{n=1}^{\infty} a_{n}$ diverges. Answer: True, by divergence test.
(b) True or false? If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.

Answer: False. Counterexample: the harmonic series is divergent even though its terms converge to 0 .
(c) Let $a_{n}=\frac{4 n}{7 n+1}$. (I) Determine whether $\left\{a_{n}\right\}$ is convergent.

Answer: The sequence $\left\{a_{n}\right\}$ converges to $4 / 7$.
(II) Determine whether $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Answer: The series diverges by the divergence test.
(d) Determine whether the series $\sum_{n=1}^{\infty} \frac{n^{2}-1}{100+5 n^{2}}$ is convergent or divergent.

Answer: The series diverges by the divergence test.
v. (Sec 11.6)
(a) $\sum_{n=1} \frac{5 n!}{2^{n}}$ (hint: see factorial, think ratio test)
(b) $\sum_{n=1} \frac{n}{5^{n}}$ and $\sum_{n=1} n e^{-5 n}$

Answer: XLCT with geom. series $\sum\left(\frac{1}{5}\right)^{n}$ is inconclusive.
\checkmark LCT comparing with $\sum \frac{1}{n^{2}}$ works.
\checkmark You see power $\left(\frac{1}{5}\right)^{n}$, so you try ratio test.
(c) $\sum_{n=1}\left(\frac{1}{4 n+1}\right)^{n}$

Answer:
$\sqrt{ }$ LCT: compare with p-series like $\sum \frac{1}{n^{2}}$.
\checkmark LCT: compare with geometric series like $\sum \frac{1}{4^{n}}$.
\checkmark Can use ratio test because you see powers something ${ }^{n}$, but the computation for the ratio test is long.
(d) $\sum_{n=1} n\left(\frac{5}{7}\right)^{n}$

Answer: The comparison tests with geometric series $\sum\left(\frac{5}{7}\right)^{n}$ are inconclusive. Try ratio test because you see power $\left(\frac{5}{7}\right)^{n}$. Or use a comparison test with the p-series $\sum \frac{1}{n^{2}}$.
(e) $\sum_{n=1} \frac{|\sin (5 n)|}{5^{n}}$

Answer:
$\sqrt{ }$ see \sin and $\left(\frac{1}{5}\right)^{n}$, so think comparison test with the geometric series $\sum\left(\frac{1}{5}\right)^{n}$.
\boldsymbol{x} The LCT with $b_{n}=\left(\frac{1}{5}\right)^{n}$ fails.
\checkmark The LCT with $b_{n}=\frac{1}{n^{2}}$ works.
X Ratio test fails.)
(f) $\sum_{n=1} \frac{|\sin (5 n)|}{n^{5}}$

Answer: $\sqrt{ }$ see sin and $\left(\frac{1}{n^{5}}\right)$, so think the (non-limit) comparison test with the p-series $\sum\left(\frac{1}{n^{5}}\right)$.
XThe LCT with $b_{n}=\left(\frac{1}{n^{5}}\right)$ fails.
\checkmark The LCT with $\frac{1}{n^{3}}$ works.
\boldsymbol{X} Ratio test fails.
(g) $\sum_{n=1} \frac{2^{n}}{n^{3}}$.

Answer:
\checkmark Divergence test: numerator grows faster than the denominator, so use divergence test.
XLCT: you see 2^{n}, but find that the comparison tests with the geometric series $\sum 2^{n}$ are inconclusive.
\checkmark LCT: you try LCT with $\sum \frac{1}{n}$ and find that it works.
\checkmark Ratio test: you can try ratio test because you see power 2^{n}.
\checkmark Root test (not required to memorize): you can try root test because you see power 2^{n}.
(h) $\sum_{n=1} \frac{n!}{100^{n}}$

Answer:
\checkmark Ratio test: you see factorial and exponent 100^{n}, so think ratio test.
\checkmark Divergence test: you remember than factorial grows faster than exponential.
XLCT: You try comparing it with $\sum n!$ but the result is inconclusive.
(i) (no. 8) $\sum_{n=1} \frac{n}{\sqrt{n^{3}+4}}$

Answer: $\sqrt{ }$ LCT or comparison: looks like a p-series, so use either.
χ Ratio test: The ratio test is inconclusive. The ratio test will not work for any p-series-like series.
23. (Sec 11.1)
i. (a) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n}$ and $\lim _{n \rightarrow \infty}\left(1+\frac{5}{4 n}\right)^{n}$ if they exist. (Hint: Notice the indeterminate form of type " 1∞ ".)
Answer: \sqrt{e} and $e^{\frac{5}{4}}$
(b) Determine whether the sequence $\left\{\frac{5 n!}{2^{n}}\right\}_{n=1}^{\infty}$ converges or diverges.

Answer: diverges.
ii. Each of the following series a_{n} converges to a limit L. Given $\epsilon>0$, find a positive number N such that, if $n>N$, then a_{n} is within distance ϵ of L. SEE EXAMPLE https://egunawan.github.io/fall17/notes/ notes11_1choosingN.pdf
(a) $a_{n}=\frac{1}{n^{2}+3}, L=0$.

Answer (a possible answer):

Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N=\sqrt{\frac{1}{\epsilon}}$. Then, if $k>N$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{1}{k^{2}+3}-0\right| \\
& =\frac{1}{k^{2}+3} \\
& <\frac{1}{N^{2}+3} \quad \text { since } k>N \text { implies that } \frac{1}{k^{2}+3}<\frac{1}{N^{2}+3} \\
& =\frac{1}{\left(\sqrt{\frac{1}{\epsilon}}\right)^{2}+3} \quad \text { because } N=\sqrt{\frac{1}{\epsilon}} \\
& =\frac{1}{\left(\frac{1}{\epsilon}\right)+3} \\
& <\frac{1}{\left(\frac{1}{\epsilon}\right)} \\
& =\epsilon .
\end{aligned}
$$

ANSWER (another possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N=\sqrt{\frac{1}{\epsilon}-3}$. Then, if $k>N$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{1}{k^{2}+3}-0\right| \\
& =\frac{1}{k^{2}+3} \\
& <\frac{1}{N^{2}+3} \text { since } k>N \text { implies that } \frac{1}{k^{2}+3}<\frac{1}{N^{2}+3} \\
& =\frac{1}{\left(\sqrt{\frac{1}{\epsilon}}-3\right)^{2}+3} \text { because } N=\sqrt{\frac{1}{\epsilon}-3} \\
& =\frac{1}{\left(\frac{1}{\epsilon}-3\right)+3} \\
& =\frac{1}{\left(\frac{1}{\epsilon}\right)} \\
& =\epsilon
\end{aligned}
$$

(b) $a_{n}=\frac{3 n+2}{2 n-1}, L=\frac{3}{2}$.

Answer:

ANSWER (a possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N=\frac{7}{4 \epsilon}+\frac{1}{2}$. Then, if $k>N$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{3 k+2}{2 k-1}-\frac{3}{2}\right| \\
& =\left|\frac{3 k+2-\frac{3}{2}(2 k-1)}{2 k-1}\right| \\
& =\left|\frac{3 k+2-3 k+\frac{3}{2}}{2 k-1}\right| \\
& =\left|\frac{\frac{7}{2}}{2 k-1}\right| \\
& =\frac{\frac{7}{2}}{2 k-1} \\
& <\frac{\frac{7}{2}}{2 N-1} \quad \text { because } k>N, \text { so } \frac{1}{2 k-1}<\frac{1}{2 N-1} \\
& \left.=\frac{7}{2\left(\frac{7}{4}\right.}+\frac{1}{2}\right)-1 \\
& =\frac{\frac{7}{2}}{\left(\frac{7}{2 \epsilon}+1\right)-1} \\
& =\frac{\frac{7}{2}}{\left(\frac{7}{2 \epsilon}\right)} \\
& =\frac{7}{2} \cdot \frac{2 \epsilon}{7} \\
& =\epsilon
\end{aligned}
$$

(c) $a_{n}=\frac{n^{2}+2}{n^{2}-3}, L=1$.

Answer:
ANSWER (a possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N=\sqrt{\frac{5}{\epsilon}+3}$. Note that $N>1$. Then, if $k>N$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{k^{2}+2}{k^{2}-3}-1\right| \\
& =\left|\frac{k^{2}+2-\left(k^{2}-3\right)}{k^{2}-3}\right| \\
& =\left|\frac{2+3}{k^{2}-3}\right| \\
& =\left|\frac{5}{k^{2}-3}\right| \\
& =\frac{5}{k^{2}-3} \quad \text { because } k>N \text { and } N>1, \text { so } k \leq 2 \\
& <\frac{5}{N^{2}-3} \quad \text { since } k>N, \text { so } \frac{1}{k^{2}-3}<\frac{1}{N^{2}-3} \\
& =\frac{5}{\left(\sqrt{\frac{5}{\epsilon}+3}\right)^{2}-3} \quad \text { because } N=\sqrt{\frac{1}{\epsilon}+3} \\
& =\frac{5}{\frac{5}{\epsilon}+3-3} \\
& =\frac{5}{\left(\frac{5}{\epsilon}\right)} \\
& =\epsilon .
\end{aligned}
$$

ANSWER (another possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N=\frac{5}{\epsilon}+3$. Note that $N>1$. Then, if $k>N$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{k^{2}+2}{k^{2}-3}-1\right| \\
& =\left|\frac{k^{2}+2-\left(k^{2}-3\right)}{k^{2}-3}\right| \\
& =\left|\frac{2+3}{k^{2}-3}\right| \\
& =\left|\frac{5}{k^{2}-3}\right| \\
& =\frac{5}{k^{2}-3} \quad \text { because } k>N \text { and } N>1, \text { so } k \leq 2 \\
& <\frac{5}{N^{2}-3} \quad \text { since } k>N, \text { so } \frac{1}{k^{2}-3}<\frac{1}{N^{2}-3} \\
& =\frac{5}{\left(\frac{5}{\epsilon}+3\right)^{2}-3} \text { because } N=\frac{1}{\epsilon}+3 \\
& =\frac{5}{\left(\frac{25}{\epsilon^{2}}+\frac{30}{\epsilon}+9\right)-3} \text { because } N=\frac{1}{\epsilon}+3 \\
& =\frac{5}{\frac{25}{\epsilon^{2}}+\frac{30}{\epsilon}+6} \\
& <\frac{5}{\left(\frac{30}{\epsilon}\right)} \quad \text { because } \frac{25}{\epsilon^{2}}+\frac{30}{\epsilon}+6>\frac{30}{\epsilon} \\
& =\frac{5}{\left(\frac{30}{\epsilon}\right)} \\
& =\frac{\epsilon}{6} \\
& <\epsilon
\end{aligned}
$$

iii. The sequence $a_{n}=(5 n+4) /\left(3 n^{2}-2\right)$ converges to 0 . Justify this fact by squeezing a_{n} between 0 and another sequence of type $b_{n}=($ a constant $) / n$ and using the Squeeze theorem. You may assume $\lim _{n \rightarrow \infty}($ any constant $) / n=$ 0 . See a similar (model) solution at: https://egunawan.github.io/fall17/hw/models.pdf
Answer:

Scratch work (do not include) for Question iii You can try some constant and check if that works, but the following is a sure way to get b_{n} which works.

Think, I want to find $A n$ bigger than the numerator $5 n+4$ and $B n^{2}$ smaller than the denominator $3 n^{2}-2$ for all $n \geq$ some number. I want:

$$
\begin{aligned}
5 n+4 & \leq A n \quad(\text { note how both sides are positive whenever } n \geq 1 \text { and } B \text { is positive) } \Leftrightarrow \\
\frac{5 n+4}{n} & \leq A \Leftrightarrow \\
5+\frac{4}{n}=\frac{5 n}{n}+\frac{4}{n} & \leq A
\end{aligned}
$$

Since the left hand-side of this inequality is a decreasing sequence (for $n=1,2,3, \ldots$), we have $5+\frac{4}{n} \leq 5+\frac{1}{4}$, so I can choose $A=5+\frac{1}{4}$ or $A=6$.
I want:

$$
\begin{aligned}
B n^{2} & \leq 3 n^{2}-2 \quad(\text { note how both sides are positive whenever } n \geq 1 \text { and } B \text { is positive }) \Leftrightarrow \\
B & \leq \frac{3 n^{2}-2}{n^{2}} \Leftrightarrow \\
B & \leq \frac{3 n^{2}}{n^{2}}-\frac{2}{n^{2}} \Leftrightarrow \\
B & \leq 3-\frac{2}{n^{2}} .
\end{aligned}
$$

[^0]ANSWER (what I submit) for Question iii (a possible answer): Note that, if $n=1,2,3, \ldots$, we have

$$
0 \leq \frac{5 n+4}{3 n^{2}-2}
$$

and

$$
\begin{aligned}
\frac{5 n+4}{3 n^{2}-2} & \leq \frac{6 n}{3 n^{2}-2} \quad \text { because } 5 n+4 \leq 6 n \text { for } n \geq 1 \\
& \leq \frac{6 n}{n^{2}} \quad \text { because } n \leq 3 n^{2}-2 \text { for } n \leq 1 \\
& =\frac{6}{n}
\end{aligned}
$$

Since

$$
0 \leq \frac{5 n+4}{3 n^{2}-2} \leq \frac{6}{n} \text { for } n \geq 1
$$

AND

$$
\lim _{n \rightarrow \infty} 0=0=\lim _{n \rightarrow \infty} \frac{6}{n}
$$

by the Squeeze Theorem (Stewart top of pg 698 and see also Fig. 7) we have

$$
\lim _{n \rightarrow \infty} \frac{5 n+4}{3 n^{2}-2}=0
$$

iv. Either give an example satisfying the condition or explain why no such sequence exists.
(a) A monotonically decreasing sequence that converges to 10 .

Answer: (possible answers) $\left\{10+\frac{1}{n}\right\}_{n=1}^{\infty}$ or $\left\{10+\frac{1}{2^{n}}\right\}_{n=1}^{\infty}$
(b) A monotonically increasing bounded sequence that does not converge (that is, diverges).

Answer: No such sequence exists because the monotone sequence theorem says: if a sequence is monotonically increasing and bounded, then it converges.
(c) A non-monotonic sequence that converges to 4.

Answer: (a possible answer) $\left\{\left(\frac{-1}{2}\right)^{n}+\frac{3}{4}\right\}$ converges to $0+\frac{3}{4}$ and is not monotonic.
24. (Sec 11.2 telescoping sum)
(a) (i.) Find a formula for the n-th partial sum S_{n} of the series $\sum_{k=2}^{\infty} \frac{5}{k^{2}-1}$.
(ii.) Evaluate $\lim _{n \rightarrow \infty} S_{n}$.
(iii.) Use the previous part to determine the sum of the series $\sum_{k=2}^{\infty} \frac{5}{k^{2}-1}$ or state that the series diverges.
(b) (i.) Find a formula for the n-th partial sum S_{n} of the series $\sum_{k=1}^{\infty} \frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+3}}$.
(ii.) Evaluate $\lim _{n \rightarrow \infty} S_{n}$.
(iii.) Use the previous part to determine the sum of the series $\sum_{k=1}^{\infty} \frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+3}}$ or state that the series diverges.
25. (Sec 11.2 geometric series and decimal expansion)
(a) Use geometric series to write $2.74 \overline{9}=2.74999999 \ldots$ as a fraction. Answer:

$$
\begin{aligned}
2.74 \overline{9} & =2.74999999 \ldots \\
& =2.74+9 \frac{1}{100}+9 \frac{1}{1000}+9 \frac{1}{10000}+\ldots \\
& =2.74+\frac{9}{100} \frac{1}{10}+\frac{9}{100} \frac{1}{100}+\frac{9}{100} \frac{1}{1000}+\ldots \\
& =2.74+\frac{9}{100}\left(\frac{1}{10}\right)^{1}+\frac{9}{100}\left(\frac{1}{100}\right)^{2}+\frac{9}{100}\left(\frac{1}{1000}\right)^{3}+\ldots \\
& =2.74+\frac{9}{100} \sum_{k=2}^{\infty}\left(\frac{1}{10}\right)^{k-1} \\
& =2.74-\frac{9}{100}\left(\frac{1}{10}\right)^{0}+\frac{9}{100} \sum_{k=1}^{\infty}\left(\frac{1}{10}\right)^{k-1} \\
& =2.74-\frac{9}{100}+\frac{9}{100} \frac{1}{1-\frac{1}{10}} \\
& =2.74-\frac{9}{100}+\frac{9}{100} \frac{1}{\left(\frac{9}{10}\right)} \\
& =\frac{274}{100}-\frac{9}{100}+\frac{10}{100} \\
& =\frac{275}{100} .
\end{aligned}
$$

(b) Write a different decimal expansion for $2.74999999 \ldots$

Answer: 2.75 is the other decimal expansion for $2.74999999 \ldots$
(c) Write the repeating decimal expansion $0 . \overline{571428}$ as a fraction.

Answer:

$$
\begin{aligned}
0 . \overline{571428} & =571428\left(\frac{1}{10^{6}}\right)^{1}+571428\left(\frac{1}{10^{6}}\right)^{2}+571428\left(\frac{1}{10^{6}}\right)^{3}+\ldots \\
& =571428 \sum_{k=2}^{\infty}\left(\frac{1}{10^{6}}\right)^{k-1} \\
& =-571428\left(\frac{1}{10^{6}}\right)^{0}+571428 \sum_{k=1}^{\infty}\left(\frac{1}{10^{6}}\right)^{k-1} \\
& =-571428+571428 \frac{1}{1-\frac{1}{10^{6}}} \quad(\text { you should stop here } \ldots) \\
& =-571428+571428 \frac{10^{6}}{999,999} \quad \text { (or here, since you don't have a computing tool) } \\
& =-571428+(4,000,000 / 7) \\
& =4 / 7
\end{aligned}
$$

(d) (i) Determine whether the series $\sum_{k=1}^{\infty} 2^{2 k} 3^{1-k}$ is convergent or divergent. (ii) If it is convergent, compute the sum.
Answer: a divergent geometric series
(e) (i) Determine whether the series

$$
\sum_{k=1}^{\infty} 2^{2 k} 3^{5-2 k}+7^{k+1} 10^{-k}+3^{k+1} 4^{-k}
$$

is convergent or divergent. (ii) If it is convergent, compute the sum.
Answer: The sum of three convergent geometric series.
(f) (i) Find a closed-form formula for the nth term in the sequence $\left\{3,-4, \frac{16}{3},-\frac{64}{9}, \ldots\right\}$. (ii) Use it to determine whether the series

$$
3-4+\frac{16}{3}-\frac{64}{9}+\ldots
$$

is convergent or divergent. (iii) If it is convergent, compute the sum.
Answer: a divergent geometric series.
(g) (i) Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{n}}{e^{2 n-1}}$ is convergent or divergent. (ii) If it is convergent, compute the sum.

[^0]: Since the right hand-side of this inequality is an increasing sequence (for $n=1,2,3, \ldots$), we have $3-\frac{2}{1^{2}} \leq 3-\frac{2}{n^{2}}$ (for $n \geq 1$), so I can choose $B=3-2=1$ or any smaller positive B.

