1. True	e or False.		
(a)	If $-1 < \alpha < 1$, then $\lim_{n \to \infty} \alpha^n = 0$.	Т	\mathbf{F}
	Justification: Answer: True. Since $\lim_{n \to \infty} \alpha ^n = 0$, by Squeeze theorem we have $\lim_{n \to \infty} \alpha^n = 0$. See Sec 11.1 Ex 11 pg 6	<i>5</i> 98.	
(b)	If $0 \le a_n \le b_n$ and $\sum b_n$ diverges, then $\sum a_n$ diverges. Justification:	Т	F
	Answer: False. Counterexample: $a_n = \frac{1}{n^2}$ and $b_n = \frac{1}{n}$.	T	Б
(c)	if $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_n + b_n\}$ is divergent. Justification: Answer: False. Counterexample: $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$, but $a_n + b_n = 0$.	Т	F
(d)	if $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_nb_n\}$ is divergent. Justification: Answer: False. Counterexample: $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$, but $a_nb_n = -1$.	Т	F
(e)	If $a_n > 0$ for $n = 1, 2, 3,$ and $\{a_n\}_{n=1}^{\infty}$ is decreasing, then $\sum a_n$ converges.	\mathbf{T}	\mathbf{F}
(-)	Justification:		
	Answer: True by the monotonic sequence theorem, since $\{a_n\}$ is decreasing and bounded by 0 and a_1 .		Б
(1)	The series $\sum_{n=1}^{\infty} n^{-\sin 1}$ converges. Justification: Answer: False by <i>p</i> -series test since $\sin 1 \leq 1$.	Т	F
(g)	The series $\sum_{n=1}^{\infty} n^{-\sin 1}$ diverges. Justification:	Т	F
(1)	Answer: True by <i>p</i> -series test since $\sin 1 \le 1$.	_	_
	The series $\sum_{n=1}^{\infty} n^{-\cos 0}$ diverges. Justification: Answer: True by <i>p</i> -series test since $\cos 0 = 1$.	Т	F
	If $a_n > 0$ and $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges Justification: Answer: True. Why?	Т	F
(j)	The ratio test can be used to determine whether $\sum \frac{1}{n^4}$ converges. Justification: Answer: False. Show computation.	Т	F
(k)	The ratio test can be used to determine whether $\sum \frac{1}{n!}$ converges. Justification: Answer: True. Show computation.	Т	\mathbf{F}
(1)	If $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$, then $\lim_{n \to \infty} a_n = 0$ Justification:	Т	\mathbf{F}
	Answer: True due to Ratio Test and the fact that the terms of a convergent series have limit zero.		
(m)	If $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0$, then $\lim_{n \to \infty} a_n = 0$ Justification:	Т	\mathbf{F}
	Answer: True due to Ratio Test and the fact that the terms of a convergent series have limit zero.		
(n)	If $\lim_{n \to \infty} a_n = 0$, then $\sum a_n$ is convergent.	Т	\mathbf{F}
	Justification: $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$		
(0)	Answer: False. Counterexample: $\sum \frac{1}{n}$ is divergent. If $a > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{n} = 1$, then $\lim_{n \to \infty} a_n = 0$.	Т	\mathbf{F}
(0)	If $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$, then $\lim_{n \to \infty} a_n = 0$ Justification: Answer: Falso, Counterexample: let $a_n = n$. Then, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{n+1} = 1$, but $\lim_{n \to \infty} a_n = \infty$.	T	Ľ
	Answer: False. Counterexample: let $a_n = n$. Then $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{n} = 1$, but $\lim_{n \to \infty} a_n = \infty$.	-	Б
	$0.99999 \cdots = 1$ Justification: Answer: True. Show computation by applying the geometric series.	Т	\mathbf{F}
(q)	$0.9999 \dots \neq 1$ Justification: Answer: False because of the computation from above	Т	F
(\mathbf{r})	Answer: False because of the computation from above. 0.66 is close to $\frac{2}{3}$ but $0.66 \neq \frac{2}{3}$	т	\mathbf{F}
(*)	Justification:	-	-
	Answer: True. Show the computation which shows that $\frac{2}{3} - \frac{66}{100} \neq 0$.		

(s) 0.66666 is close to $\frac{2}{3}$ but $0.666666 \neq \frac{2}{3}$ Justification:	Т	\mathbf{F}
Answer: False. The geometric series computation shows that $0.666666\cdots = \frac{2}{3}$		
(t) If 200 terms are added to a convergent series, the new series is still convergent Justification: Answer: True	Т	\mathbf{F}
(u) If 200 terms are removed from a divergent series, the new series is covergent Justification: Answer: False.	Т	\mathbf{F}

- 2. (7.8 improper integral)
 - i. When is an integral improper?
 - ii. Circle all the *improper* integrals and evaluate. Answer: All are improper except the first integral.

$$\int_{2}^{3} \sqrt{x-2} \, \mathrm{dx}, \quad \int_{0}^{1} \frac{27}{x^{5}} \, \mathrm{dx}, \quad \int_{-1}^{1} \frac{1}{x} \, \mathrm{dx}, \quad \int_{2}^{\infty} \left(\frac{1}{e^{5}}\right)^{x} \, \mathrm{dx}, \quad \int_{2}^{\infty} \frac{1}{x^{2}+8x-9} \, \mathrm{dx}$$
$$\int_{0}^{1} \frac{4}{x^{5}} dx \text{ ans: divergent}, \quad \int_{0}^{1} \frac{4}{x^{0.5}} dx \text{ ans: 8}, \quad \int_{2}^{3} \frac{2}{\sqrt{3-x}} dx \text{ ans: 4}, \quad \int_{4}^{8} \frac{4}{x\sqrt{x^{2}-16}} dx \text{ ans:} \pi/3, \quad \int_{-7}^{7} \frac{1}{\sqrt{49-x^{2}}} dx. \text{ ans:} \pi/3$$

iii. Write 2 improper (definite) integrals (different from above) so that one is convergent and the other is divergent.

- iv. Write 2 proper (definite) integrals that are different from above.
- v. Write 2 indefinite integrals.
- vi. Determine whether $\int_0^1 9x^2 \ln(x) dx$ converges or diverges. If it converges, evaluate it. Answer: -1

3. (WebAssign 9.1 differential equations)

- (a) For what values of k does the function $y = \cos(kt)$ satisfy the differential equation 4y'' = -9y? Answer: $k = -\frac{3}{2}, k = \frac{3}{2}$
- (b) Circle all functions which are solutions to 4y'' = -9y. (Possibly none or all).

1.
$$y = -\cos(\frac{3t}{2})$$

Answer: Yes
2. $y = \cos(\frac{3t}{2}) + 1$
Answer: No
3. $y = \sin(\frac{3t}{2})$
Answer: Yes
4. $y = \sin(\frac{3t}{2}) + \cos(\frac{3t}{2}) + \cos($

 $\left(\frac{3t}{2}\right)$

(c) True or false? Every member of the family of functions $y = \frac{4\ln(x) + C}{x}$ is a solution of the differential equation

$$x^2y' + xy = 4$$

Answer: True. Show this by substituting y and y' into the differential equation.

- (d) Find a solution of the differential equation $x^2y' + xy = 4$ that satisfies the initial condition y(1) = 2. Answer: $y = \frac{4\ln(x)+2}{x}$.
- (e) Find a solution of the differential equation $x^2y' + xy = 4$ that satisfies the initial condition y(2) = 1. Answer: $y = \frac{4\ln(x) + 2 - 4\ln(2)}{x}$.
- (f) Find a solution of the differential equation $x^2y' + xy = 4$ that satisfies the initial condition y(3) = 1. Answer: $y = \frac{4\ln(x) + 3 - 4\ln(3)}{x}$.
- (g) What can you say about a solution of the differential equation $y' = -\frac{1}{2}y^2$ just by looking at the differential equation? Circle all possibilities.

- 1. The function y must be equal to 0 on any interval on which it is defined. Answer: no.
- 2. The function y must be strictly increasing on any interval on which it is defined. Answer: no.
- 3. The function y must be increasing (or equal to 0) on any interval on which it is defined. Answer: no.
- 4. The function y must be decreasing (or equal to 0) on any interval on which it is defined. Answer: correct.
- 5. The function y must be strictly decreasing on any interval on which it is defined. Answer: no.
- (h) Verify that all members of the family $y = \frac{2}{x+C}$ are solutions of the differential equation $y' = -\frac{1}{2}y^2$.
- (i) Write a solution of the differential equation $y' = -\frac{1}{2}y^2$ that is not a member of the family $y = \frac{2}{x+C}$. Answer: y = 0
- (j) Find a solution of the initial-value problem. $y' = -\frac{1}{2}y^2$ y(0) = 0.1Answer: $\frac{2}{x+20}$
- (k) Find a solution of the initial-value problem. $y'=-\frac{1}{4}y^2 \qquad y(0)=0.2$ Answer: $\frac{4}{x+20}$
- (l) Find a solution of the initial-value problem. $y' = -\frac{1}{3}y^2$ y(0) = 0.5Answer: $\frac{3}{x+6}$
- (m) Find a solution of the initial-value problem. $y' = -\frac{1}{6}y^2$ y(0) = 0.5Answer: $\frac{6}{x+12}$
- (n) A population is modeled by the differential equation

$$\frac{dP}{dt} = 1.1P\left(1 - \frac{P}{4000}\right)$$

- 1. For what values of P is the population increasing? Answer: (0,4000). Explanation: You need 1 - P/4000 > 0 and P > 0.
- For what values of P is the population decreasing? Answer: (4000,∞). Explanation: You need 1 - P/4000 < 0 and P > 0.
 What are the equilibrium solutions?

Answer: P = 4000 and P = 0. Explanation: You need dP/dt = 0.

(o) A function y(t) satisfies the differential equation

$$\frac{dy}{dt} = y^4 - 8y^3 + 15y^2.$$

- 1. What are the constant solutions of the equation? Answer: y = 0, y = 3, and y = 5
- 2. Sketch the polynomial $t^4 8t^3 + 15t^2$. In particular, mark the *x*-intercepts.
- 3. For what values of y is y increasing? Answer: When y is in one of the intervals (-∞,0), (0,3), (5,∞)
 4. For what values of y is y decreasing?
- Answer: When y is in the interval (3,5)
- 4. (9.1 Worksheet)
 - (a) True or false? Every differential equation has a constant solution. (If true, explain. If false, give a counterexample.)

Answer: False. Counterexample: think of a function g(y) which has no zeros. You can use $\frac{dy}{dx} = g(y)$ as a counterexample.

- (b) Consider the differential equation $\frac{dy}{dt} = 1 2y$.
 - i. Find all constant solution/s. Answer: y = 1/2

ii. Which of the following is a family of solutions? You may need to circle more than one.

$$y(t) = 1 + Ke^{-2t}$$
 $y(t) = -Ke^{-2t}$ $y(t) = \frac{1}{2} + Ke^{-2t}$ $y(t) = \frac{1}{2} - Ke^{-2t}$

Answer: $y(t) = \frac{1}{2} + Ke^{-2t}$ $y(t) = \frac{1}{2} - Ke^{-2t}$

- 5. (9.3 reading homework)
 - (a) Draw a rough sketch of a possible solution to the logistic differential equation $\frac{dP}{dt} = 5P\left(1-\frac{P}{8}\right)$. You do not need to solve this differential equation to draw a rough sketch. Hint: Explained in https://www.khanacademy.org/math/ap-calculus-bc/bc-diff-equations/bc-logistic-models/e/logistic-differential-equation
- 6. (9.3 WebAssign)
 - (a) Find the solution of the differential equation that satisfies the given initial condition.

$$\frac{dy}{dx} = \frac{x}{y}, \quad y(0) = -9$$

Answer: $y = -\sqrt{x^2 + 81}$

(b) Find the solution of the differential equation that satisfies the given initial condition.

$$xy' + y = y^2, y(1) = -8$$

Answer: $y = \frac{8}{8-9x}$

- (c) Consider the differential equation $(x^2 + 15)y' = xy$.
 - i. Find all constant solutions. Answer: y = 0
 - ii. Find all solutions.

Answer: $y = K\sqrt{x^2 + 15}$

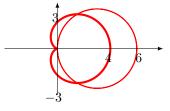
(d) The differential equation below models the temperature of a 86° C cup of coffee in a 20° C room, where it is known that the coffee cools at a rate of 1° C per minute when its temperature is 70° C. Solve the differential equation to find an expression for the temperature of the coffee at time t. (Let y be the temperature of the cup of coffee in $^{\circ}C$, and let t be the time in minutes, with t = 0 corresponding to the time when the temperature was 86° C.)

$$\frac{dy}{dt} = -\frac{1}{50}(y-20)$$

Answer: $y = Ke^{-t/50} + 20$. After considering the initial condition, we see that the temperature of the coffee at the time is described by $y = 66e^{-t/50} + 20$.

- (e) A tank contains 8000 L of brine with 14 kg of dissolved salt. Pure water enters the tank at a rate of 80 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate.
 - 1. How much salt is in the tank after t minutes? Answer: $y = 14e^{-t/100}$ kg
 - 2. How much salt is in the tank after 20 minutes? Answer: $14e^{-0.2}$ kg. (Around 11.5 kg). You don't need to approximate.
- (f) Find the orthogonal trajectories of the family of curves $y^2 = 8kx^3$. Sketch these orthogonal trajectories. Answer: $2x^2 + 3y^2 = C$, a certain family of ellipses.
- 7. (Sec 10.3 Week 15 Quiz)
 - (a) Sketch the polar equation $r = \frac{5}{2}$
 - (b) Sketch the polar equation $\theta = \frac{\pi}{4}$
 - (c) Convert the polar equation r = 3 to Cartesian. Answer: $x^2 + y^2 = 9$

- (d) Convert the polar equation $\theta = \frac{\pi}{3}$. Answer: $y = \sqrt{3}x$
- (e) Convert the polar equation $\theta = \frac{\pi}{6}$. Answer: $y = \frac{\sqrt{3}}{3}x$
- (f) Convert the polar equation $r=9\cos\theta$ to Cartesian. Answer: $(x-4.5)^2+y^2=(4.5)^2$
- 8. Consider the circle $r = 6\cos\theta$ and the cardioid $r = 2 + 2\cos\theta$.



- (a) Mark points on *both* curves where $\theta = 0, \frac{\pi}{4}$, and $\frac{\pi}{2}$.
- (b) Shade in the area inside the circle and outside the cardioid.
- (c) Find the area (which you shade) inside the circle and outside the cardioid. Answer: $\int_0^{\pi/3} 2(8\cos^2\theta - 1 - 2\cos\theta)d\theta = 4\pi.$
- 9. (Sec 10.1, 10.2 Week 12 quiz)
 - i. (a) Find *parametric* equations for the top half of the circle centered at (2,3) with radius 5, oriented *clockwise*. Answer:

$$\begin{aligned} x &= 2 + 5\cos(-t) \\ y &= 3 + 5\sin(-t) \\ \text{for } \pi &\leq t \leq 2\pi \end{aligned}$$

(b) Eliminate the parameter to find a Cartesian equation of the curve.

ii. Consider the curve described by the parametric equations

$$\begin{aligned} x &= t^3 + 1 \\ y &= 2t - t^2, \quad \text{ for } -\infty < t < \infty \end{aligned}$$

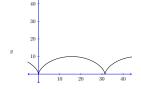
- (a) Mark the orientation on the curve (direction of increasing values of t).
- (b) Find the area enclosed by the x-axis and the given curve. Answer:

$$\int_{1}^{9} y \, d\mathbf{x} = \int_{t=0}^{t=2} y(t)x'(t)dt$$
$$= \int_{0}^{2} (2t - t^{2})(3t^{2})dt$$
$$= \int_{0}^{2} (6t^{3} - 3t^{4})dt$$
$$= \frac{6}{4}t^{4} - \frac{3}{5}t^{5}\Big|_{0}^{2}$$
$$= \frac{3(16)}{2} - \frac{3(32)}{5}$$
$$= \frac{3(40 - 32)}{5}$$
$$= \boxed{\frac{24}{5}}$$

- (c) Perform and describe a reality check by comparing your answer and the graph which has been drawn to scale.
- iii. Consider the cycloid which is described by the parametric equations

$$\begin{aligned} x &= 5(t - \sin t) \\ y &= 5(1 - \cos t), \quad \text{ for } \infty < t < \infty \end{aligned}$$

(a) Mark the orientation on the curve (direction of increasing values of t).



- (b) Find the area enclosed by the x-axis and one arch of the cycloid. Hint: $dx = 5(1 \cos t) dt$. Answer: $3\pi 5^2$
- (c) Perform a reality check by comparing your answer and the graph (which is drawn to scale).

10. (Sec
$$11.10$$
)

i. If f has a power series representation at 4, that is, if $f(x) = \sum_{n=0}^{\infty} c_n (x-4)^n$ for |x-4| < R, then its coefficients

are given by the formula $c_n =$ Answer: Theorem 5 on page 760.

Give a proof for your formula for c_n . Answer: follow pg 759 or lecture notes https://egunavan.github.io/falli7/notes/notesil_10part1.pdf.

ii. Circle all the true statements and cross out all the false statements, and justify.

(a) If the series $\sum_{n=1}^{\infty} c_n x^n$ converges for |x| < R, then $\lim_{n \to \infty} c_n x^n = 0$ for |x| < R. Answer: True. See explanation, first sentence of pg 763. Or see Sec 11.2, Thm 6, pg 713.

- (b) If the series $\sum_{n=1}^{\infty} c_n x^n$ diverges for x = 5, then $\lim_{n \to \infty} c_n x^n \neq 0$ for x = 5. Answer: False. A counterexample: $c_n = \frac{1}{n \cdot 5^n}$. See Ex. 9 Sec 11.2, pg 713.
- iii. Find the Maclaurin series for $f(x) = 6(1-x)^{-2}$ using the definition of a Maclaurin series. (You may assume that f(x) has a power series expansion). Find the associated radius of convergence.

Answer: Use Taylor series theorem/formulas 5,6,7 on pg 760. Follow Example 8 but replace $(1+x)^k$ with $(1-x)^{-2}$. The Maclaurin series is $\sum_{n=0}^{\infty} 6(n+1)x^n$

Use Ratio Test to find the radius of convergence R = 1

iv. Use a Maclaurin series given in this table http://egunawan.github.io/fall17/quizzes/11_10_table01.pdf (printed on the next page) to obtain the Maclaurin series for the function $f(x) = 8e^x + e^{8x}$. Find the radius of convergence.

Answer: Use the table to get $e^x = \sum_{n=1}^{\infty} x^n n!$. Apply the Composition Theorem with h(x) = 8x and $f(t) = e^t$ to get $e^{8x} = \sum_{n=1}^{\infty} \frac{(8x)^n}{n!}$. Apply 'sum' theorem for series (pg 714 Sec 11.2) to get the sum $\sum_{n=0}^{\infty} (8+8^n) \frac{x^n}{n!}$. The series is convergent for all real numbers.

v. Evaluate the indefinite integral $\left(8\int \frac{e^x-1}{5x} \, \mathrm{dx}\right)$ as an infinite series.

Answer: Read Example 11 pg 768-769 for similar problem. This answer gives the Maclaurin series but you can choose a different Taylor series centered not at 0. First either use the table or directly evaluate the Maclaurin series for $e^x - 1 = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) - 1 = \sum_{n=1}^{\infty} \frac{x^n}{n!}$. Multiply this Maclaurin series by $\frac{1}{x}$ to get $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}.$ Apply term-by-term integration to get final answer, $\boxed{\frac{8}{5} \sum_{n=1}^{\infty} \frac{x^{n}}{(n)n!} + C}$

vi. Find the Maclaurin series for $f(x) = e^{-4x}$ using the definition of a Maclaurin series. Don't use the table. (You may assume that f(x) has a power series expansion). Find the associated radius of convergence R.

Answer: Follow Example 1 pg 760 but replace x with -4x. You get $e^{-4x} = \sum_{n=0}^{\infty} \left(\frac{(-4)^n}{n!}\right) x^n$. The series is convergent for all real numbers

- 11. (11.3 Integral test and p-series, 11.8 geometric series test/ratio test to find interval of convergence, 11.9 power series representation of a function, Week 8 quiz)
- 12. (Section 11.3) Suppose f is a continuous, positive, and decreasing function on $[1, \infty)$ and $a_k = f(k)$. By drawing a picture, rank the following three quantities in increasing order:

$$\int_{1}^{6} f(x) \, \mathrm{dx} \qquad \sum_{k=1}^{5} a_{k} \qquad \sum_{k=2}^{6} a_{k}$$

13. (Sec 11.3 p-series) The Riemann zeta-function ζ ("zeta") is defined by

$$\zeta(x) := \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

It is used in number theory to study the distribution of prime numbers.

- (a) What is the domain of the function ζ ? (That is, for what values of x is this function defined?) Answer: Sec 11.3, page 722.
- (b) Euler computed $\zeta(2)$ to be $\frac{\pi^2}{6}$. (See page 720, sec 11.3). Use this fact to find the sum of each series below.

$$\sum_{n=3}^{\infty} \frac{1}{n^2} \qquad \sum_{n=1}^{\infty} \frac{1}{(5n)^2} \qquad \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

- 14. (Section 11.8 power series)
 - (a) What is a power series? (See Sec 11.8, top of page 747)
 - (b) In most cases, how do you find the radius of convergence of a power series? Answer: to ratio test usually works. In certain situations, geometric series test works. See the Examples 1-5 in Sec 11.8, pg 747-750
 - (c) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}.$$
 Answer: see Example 5, pg 750.

(d) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} n! x^{2n}.$$
 Answer: see Example 1, pg 747.

(e) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{n^5}$$
. Answer: same *R* as Ex 2, pg 747, but both endpoints are included.

(f) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{n!}.$$
 Answer: same answer as Example 3, pg 748.

15. (Sec 11.9 WebAssign finding interval of convergence) For each function, find a power series representation and determine the interval of convergence.

(Check your work with WolframAlpha. Type "series representation of ...")

(a) $f(x) = \frac{1}{3+x}$ (see Sec 11.9 Example 2) (b) $f(x) = \frac{x^3}{5+x}$ (see Sec 11.9 Example 3)

(c)
$$f(x) = \frac{x}{1+10x^2}$$
 (a variation of Sec 11.9 Example 3)

- 16. (Sec 11.9 WebAssign differentiation and integration of power series) For each function, find a power series representation. Determine the radius of convergence. (You do not need to determine the interval of convergence)
 - (a) $f(x) = \frac{1}{(2+x)^2}$ (a variation of Sec 11.9 Ex 5) (b) $f(x) = \ln(1+x)$ (see Sec 11.9, Ex 6) (c) $f(x) = \arctan(x)$ (see Sec 11.9, Ex 7) (d) $\int \frac{1}{1+x^7} dx$ (see Sec 11.9, Ex 8) (e) $\int \frac{x}{1-x^7} dx$ (a variation Sec 11.9, Ex 8)
- 17. (Ch 7 Integration methods) Decide whether the best method of integration is integration by parts, u-substitution, or trig substitution. Explain the first key step/s of evaluating the integrals (There often are more than one right answer).

(a)
$$\int_0^4 \frac{\ln(x)}{\sqrt{x}} \, \mathrm{dx}$$

Answer: Integration by parts with $u = \ln(x)$ and $dv = \frac{1}{\sqrt{x}}$.

(b)
$$\int \frac{1}{x \ln(x)} \, \mathrm{d}x$$

Answer: u-substitution for $\ln(x)$. Get $\ln(\ln(x))$ + Constant.

(c)
$$\int_1^2 \ln(x) \, \mathrm{d}x$$

Answer: Integration by parts with (the only option) $u = \ln(x)$ and dv = dx

(d)
$$\int x e^{0.2x} \, \mathrm{dx}$$

Answer: Integration by parts with u = x and $dv = e^{0.2x} dx$

(e)
$$\int_0^1 e^x \sin(x) \, \mathrm{dx}$$

Answer: Integration by parts with either $u = e^x$ and $dv = \sin(x) dx$ OR $dv = e^x dx$ and $u = \sin(x)$

(f)
$$\int \frac{1}{x^2 + 2x + 4} \, \mathrm{d}x$$

Answer: Complete the square, then use inverse trig substitution with $u = \sqrt{3} \tan(\theta)$ or $u = \sqrt{3} \cot(\theta)$

18. Evaluate
$$\int \frac{1}{x^2 + 25} \, \mathrm{dx}$$

Answer: Do inverse trig substitution $x = 5 \tan(\theta)$ so that you get $\int \frac{1}{x^2 + 25} dx = \int \frac{1}{5} \theta d\theta = \frac{1}{5} \arctan\left(\frac{x}{5}\right) + c.$

19. (Section 7.4 WebAssign partial fraction decomposition)

(a) Evaluate
$$\int \frac{10}{(x+5)(x-2)} dx$$

Answer:
$$\frac{10(\ln(x-2)-\ln(5+x))}{7}$$

(b) Evaluate
$$\int \frac{x+4}{x^2+2x+5} dx$$

(c) Evaluate
$$\int \frac{7x^2-6x+16}{x^3+4x} dx$$

20. (7.8 improper integral, 11.3 integral test)

i. (a) Find the values of p for which the integral $\int_{e}^{\infty} \frac{6}{x(\ln x)^{p}} dx$ converges. Evaluate the integral for these values of p.

Answer: u-substitution. Check cases p = 1, p < 1, and p > 1. p > 1 diverges

(b) Determine whether

$$\int_{2}^{\infty} \left(\frac{1}{e^{5}}\right)^{x} \mathrm{dx}$$

is convergent or divergent. If it is convergent, evaluate it. Answer: $1/(5 \ 10^e)$

(c) Determine whether

$$\int_2^\infty \frac{1}{x^2 + 8x - 9} \, \mathrm{dx}$$

is convergent or divergent. If it is convergent, evaluate it. Answer: You can use partial fraction decomposition. $\ln(11)/10$

- (d) Determine whether $\int_0^1 4x^{-5} dx$ is convergent or divergent. If it is convergent, evaluate it. Answer: divergent
- (e) Determine whether

$$\int_0^1 \frac{4}{x^{0.5}} \, \mathrm{dx}$$

is convergent or divergent. If it is convergent, evaluate it. Answer: 8

(f) Determine whether

$$\int_2^3 \frac{2}{\sqrt{3-x}} \, \mathrm{d}x$$

is convergent or divergent. If it is convergent, evaluate it. Answer: 4

ii. (a) Evaluate the integral $\int_{1}^{\infty} \frac{3}{x^{6}} dx$. Are the conditions for the Integral Test satisfied? If so, use the Integral $\frac{\infty}{x^{6}} = 3$

Test to determine whether the series $\sum_{1}^{\infty} \frac{3}{n^6}$ is convergent or divergent.

Answer = 3/5

(b) Evaluate the integral

$$\int_1^\infty \frac{1}{(4x+2)^3} \, \mathrm{dx}.$$

Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} \frac{1}{(4n+2)^3}$ is convergent or divergent. Answer = 1/288

- (c) Evaluate the integral $\int_{1}^{\infty} \frac{1}{\sqrt{x+9}} \, dx$. Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} \frac{1}{\sqrt{n+9}}$ is convergent or divergent. Answer: divergent
- (d) Evaluate the integral $\int_{1}^{\infty} x e^{-9x} dx$. Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} ne^{-9n}$ is convergent or divergent. Answer: $10/81e^9$

- (e) Are the conditions for the Integral Test satisfied for the series $\sum_{1}^{\infty} (\cos n)^2 + \frac{1}{n} dx$? Answer: No. Why? $\sum_{n=1}^{\infty} (\cos n)^2$
- (f) Are the conditions for the Integral Test satisfied for the series $\sum_{1}^{\infty} \frac{(\cos n)^2}{n} dx$? Answer: No. Why?
- 21. (Week 4 quiz)
 - i. (a) Consider $\sum \frac{5^n}{n!}$ and $\sum \frac{n!}{n^n}$ (similar to Sec 11.6 Example 5 pg 741).
 - (b) Show your work for attempting to use the ratio test to this series to determine whether it converges or diverges. Answer:

For $a_n = \frac{5^n}{n!}$: $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{5^{n+1}}{(n+1)!} \frac{n!}{5^n}$ $= \lim_{n \to \infty} \frac{5}{n+1}$ $= \lim_{n \to \infty} \frac{\frac{5}{n}}{1+\frac{1}{n}}$ $= \frac{\lim_{n \to \infty} \frac{5}{n}}{1+\lim_{n \to \infty} \frac{1}{n}}$ = 0.

For $a_n = \frac{n!}{n^n}$:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{(n+1)}} \frac{n^n}{n!}$$
$$= \lim_{n \to \infty} (n+1) \frac{n^n}{(n+1)^{(n+1)}}$$
$$= \lim_{n \to \infty} (n+1) \frac{n^n}{(n+1)^n (n+1)}$$
$$= \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n$$
$$= \frac{1}{e} \text{ as given at the top of the page}$$

See also book's solution for a similar-looking series Sec 11.6 Example 5 pg 741.

(c) If the ratio test is conclusive, determine whether the series is convergent or divergent. Otherwise, state that the ratio test is inconclusive. Answer:

The two series converge by the ratio test since 0 < 1 and $\frac{1}{e} < 1$.

- ii. Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ and $\sum_{n=4}^{\infty} \frac{1}{2^n-9}$ (from Sec 11.4 Examples 2 and 3) converge Answer:
- iii. Determine whether the series $\sum_{n=1}^{\infty} \frac{2n^2+3n}{\sqrt{5+n^5}}$ and $\sum_{n=1}^{\infty} \frac{5}{2n^2+4n+3}$ (from Sec 11.4 Examples 1 and 4) converge. Answer:
- 22. (11.2: geometric and harmonic series, 11.4: comparison test, 11.6: ratio tests) STRATEGY TIPS:

- ✓ The ratio test usually works when the term contains factorial like (n+3)! or exponents like 7^n , $\frac{1}{7n}$
- ★ The ratio test will not work with series with ONLY *p*-series-like terms, for example, $\sum \frac{n^2+4}{\sqrt{n^5-1}}$. Convince yourself.
- \checkmark Only use one of the comparison tests are when the series looks like the geometric series $\sum r^n$, or the *p*-series $\sum \frac{1}{n^p}$.
 - You can check all the 'does [blank] converge' questions below with WolframAlpha.

Show whether each series $\sum a_n$ converges. For full credit you should give

- The series $\sum b_n$ and an explanation why $\sum b_n$ converges/diverges (if you use Comparison or Limit Comparison test)
- An inequality or limit computation
 - If using the Comparison Test, give an inequality of the form $a_n \leq b_n$ or $a_n \leq b_n$
 - If using the Limit Comparison Test, compute $\lim_{n\to\infty} a_n/b_n$
- A conclusion statement.
- i. (Book examples) Pg 728-730: Sec 11.4 Ex 1,2,3,4; Pg 740-741 Sec 11.6 Ex 3, 5

ii. (a)
$$\sum_{n=2}^{\infty} \frac{n^3}{n^4 + 1}$$

Answer: divergent. Let $b_n = 1/n$ and use LCT.

- (b) $\sum_{n=1}^{\infty} \frac{6^n}{5^n 1}$ Answer: divergent. Use Divergence test.
- (c) $\sum_{n=1}^{\infty} \frac{(2n-1)(n^2-1)}{(n+1)(n^2+4)^2}$ Answer: convergent. Let $b_n = 1/n^2$ and use LCT.
- iii. (Sec 11.4)
 - (a) Determine whether the series $\sum_{n=1}^{\infty} \frac{n+6^n}{n+2^n}$ converges or diverges. Answer: \checkmark LCT attempt 1: You try LCT with $\sum (\frac{6}{2})^n$ and it works. ✓LCT attempt 2: LCT with $\sum \frac{1}{n}$ also works. But this may not be the first thing that comes to your mind. ✓ Divergence test: the terms are increasing, so this test works. ✓Comparison test: find a big enough constant A so that $a_n > A(\frac{6}{2})^n$. ✓Ratio test: you see powers, so you try the ratio test. The ratio $\frac{a_{n+1}}{a_n}$ goes to 6/2. (b) Determine whether the series $\sum_{n=1}^{\infty} \frac{2n+3^n}{2n+7^n}$ converges or diverges.
 - Answer: \checkmark LCT attempt 1: You try LCT with $\sum (\frac{3}{7})^n$ and it works. ✓LCT attempt 2: LCT with $\sum \frac{1}{n^2}$ also works, but this may not be the first thing that comes to your mind. **X**Divergence test: inconclusive.

✓Comparison test: find a big enough constant A so that $a_n < A(\frac{3}{7})^n$. ✓Ratio test: you see powers, so you try the ratio test. The ratio $\frac{d_{n+1}}{a_n}$ goes to 3/7.

- (c) Determine whether the series $\sum_{n=1}^{\infty} \frac{5n^2 1}{6n^4 + 7}$ converges or diverges. (Hint: compare with a p-series and use one of the comparison tests. Would the ratio test be conclusive? See strategy above.)
- (d) Determine whether the series $\sum_{n=6}^{\infty} \frac{n-5}{n7^n}$ converges or diverges. (Hint: compare with a geometric series. You can also try the ratio test because you see powers $(\frac{1}{7})^n$
- (e) Determine whether the series $\sum_{n=1}^{\infty} \frac{5^n}{n7^n}$ converges or diverges. (Hint: compare with a geometric series.) You can also try the ratio test because you see powers $(\frac{5}{7})^n$
- (f) Determine whether the series $\sum_{n=1}^{\infty} \frac{5^{2n}}{n7^n}$ converges or diverges. Answer:

XLCT with geometric series $\sum \left(\frac{25}{7}\right)^n$ is inconclusive.

✓LCT with comparing with the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ works. ✓You try the ratio test because you see powers $(\frac{25}{7})^n$.

(g) Determine whether the series $\sum_{n=1}^{\infty} \frac{n+8}{n\sqrt{n}}$ converges or diverges.

Answer:

✓LCT: you compare with a p-series because it looks like one.

★Ratio test: you try ratio test and it's inconclusive. Recall that the ratio test never works for any series that looks ONLY like a *p*-series.

- iv. (Divergence Test Sec 11.2)
 - (a) True or false? If a_n does not converge to 0, then the series of $\sum_{n=1}^{\infty} a_n$ diverges. Answer: True, by divergence test.
 - (b) True or false? If $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ converges. Answer: False. Counterexample: the harmonic series is divergent even though its terms converge to 0.
 - (c) Let $a_n = \frac{4n}{7n+1}$. (I) Determine whether $\{a_n\}$ is convergent. Answer: The sequence $\{a_n\}$ converges to 4/7. (II) Determine whether $\sum_{n=1}^{\infty} a_n$ is convergent. Answer: The series diverges by the divergence test.
 - (d) Determine whether the series $\sum_{n=1}^{\infty} \frac{n^2-1}{100+5n^2}$ is convergent or divergent. Answer: The series diverges by the divergence test.
- v. (Sec 11.6)
 - (a) $\sum_{n=1} \frac{5n!}{\frac{2^n}{5^n}}$ (hint: see factorial, think ratio test) (b) $\sum_{n=1} \frac{n}{5^n}$ and $\sum_{n=1} ne^{-5n}$
 - - Answer: **X**LCT with geom. series $\sum (\frac{1}{5})^n$ is inconclusive. ✓LCT comparing with $\sum \frac{1}{n^2}$ works. ✓You see power $(\frac{1}{5})^n$, so you try ratio test.
 - (c) $\sum_{n=1} \left(\frac{1}{4n+1} \right)$

✓LCT: compare with *p*-series like $\sum \frac{1}{n^2}$.

✓LCT: compare with geometric series like $\sum \frac{1}{4^n}$.

 \checkmark Can use ratio test because you see powers somethingⁿ, but the computation for the ratio test is long.

(d) $\sum_{n=1} n\left(\frac{5}{7}\right)^n$

Answer: The comparison tests with geometric series $\sum \left(\frac{5}{7}\right)^n$ are inconclusive. Try ratio test because you see power $(\frac{5}{7})^n$. Or use a comparison test with the p-series $\sum \frac{1}{n^2}$.

(e) $\sum_{n=1} \frac{|\sin(5n)|}{5^n}$

Answer:

✓ see sin and $(\frac{1}{5})^n$, so think comparison test with the geometric series $\sum (\frac{1}{5})^n$. **★**The LCT with $b_n = (\frac{1}{5})^n$ fails. **↓**The LCT with $b_n = \frac{1}{n^2}$ works. **✗**Ratio test fails.)

(f)
$$\sum_{n=1}^{\infty} \frac{|\sin(5n)|}{5}$$

Answer: \checkmark see sin and $(\frac{1}{n^5})$, so think the (non-limit) comparison test with the p-series $\sum(\frac{1}{n^5})$. ★The LCT with $b_n = (\frac{1}{n^5})$ fails. ↓The LCT with $\frac{1}{n^3}$ works. **X**Ratio test fails.

 2^n (g) $\sum_{n=1} \frac{-}{n^3}$

Answer:

 \checkmark Divergence test: numerator grows faster than the denominator, so use divergence test.

XLCT: you see 2^n , but find that the comparison tests with the geometric series $\sum 2^n$ are inconclusive. ✓LCT: you try LCT with $\sum \frac{1}{n}$ and find that it works.

✓ Ratio test: you can try ratio test because you see power 2^n .

✓ Root test (not required to memorize): you can try root test because you see power 2^n .

(h) $\sum_{n=1} \frac{n!}{100^n}$

Answer: $2n=1 100^n$

✓ Ratio test: you see *factorial* and exponent 100^n , so think ratio test. ✓ Divergence test: you remember than factorial grows faster than exponential. ✓LCT: You try comparing it with $\sum n!$ but the result is inconclusive.

(i) (no. 8) ∑_{n=1} n/√(n³ + 4)
 Answer: ✓LCT or comparison: looks like a *p*-series, so use either.
 ✗Ratio test: The ratio test is inconclusive. The ratio test will not work for any p-series-like series.

23. (Sec 11.1)

i. (a) Compute lim_{n→∞} (1 + 1/2n)ⁿ and lim_{n→∞} (1 + 5/4n)ⁿ if they exist. (Hint: Notice the indeterminate form of type "1[∞]".) Answer: √e and e^{5/4}
(b) Determine whether the sequence {5n!/2ⁿ/2ⁿ} _{n=1}[∞] converges or diverges.

Answer: diverges.

- ii. Each of the following series a_n converges to a limit L. Given $\epsilon > 0$, find a positive number N such that, if n > N, then a_n is within distance ϵ of L. SEE EXAMPLE https://egunawan.github.io/fall17/notes/notes11_1choosingN.pdf
 - (a) $a_n = \frac{1}{n^2+3}, L = 0.$ Answer (a possible answer):

Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N = \sqrt{\frac{1}{\epsilon}}$. Then, if k > N, we have $|a_k - L| = \left| \frac{1}{k^2 + 3} - 0 \right|$ $= \frac{1}{k^2 + 3}$ since k > N implies that $\frac{1}{k^2 + 3} < \frac{1}{N^2 + 3}$ $= \frac{1}{\left(\sqrt{\frac{1}{\epsilon}}\right)^2 + 3}$ because $N = \sqrt{\frac{1}{\epsilon}}$ $= \frac{1}{\left(\frac{1}{\epsilon}\right) + 3}$ $< \frac{1}{\left(\frac{1}{\epsilon}\right)}$ $= \epsilon$.

ANSWER (another possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N = \sqrt{\frac{1}{\epsilon} - 3}$. Then, if k > N, we have

$$|a_{k} - L| = \left| \frac{1}{k^{2} + 3} - 0 \right|$$

= $\frac{1}{k^{2} + 3}$
< $\frac{1}{N^{2} + 3}$ since $k > N$ implies that $\frac{1}{k^{2} + 3} < \frac{1}{N^{2} + 3}$
= $\frac{1}{\left(\sqrt{\frac{1}{\epsilon}} - 3\right)^{2} + 3}$ because $N = \sqrt{\frac{1}{\epsilon} - 3}$
= $\frac{1}{\left(\frac{1}{\epsilon} - 3\right) + 3}$
= $\frac{1}{\left(\frac{1}{\epsilon}\right)}$
= ϵ .

(b)
$$a_n = \frac{3n+2}{2n-1}, L = \frac{3}{2}.$$

Answer:

ANSWER (a possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N = \frac{7}{4\epsilon} + \frac{1}{2}$. Then, if k > N, we have

$$\begin{aligned} |a_k - L| &= \left| \frac{3k+2}{2k-1} - \frac{3}{2} \right| \\ &= \left| \frac{3k+2-\frac{3}{2}(2k-1)}{2k-1} \right| \\ &= \left| \frac{3k+2-3k+\frac{3}{2}}{2k-1} \right| \\ &= \left| \frac{\frac{7}{2}}{2k-1} \right| \\ &= \frac{\frac{7}{2}}{2k-1} \\ &< \frac{\frac{7}{2}}{2N-1} \quad \text{because } k > N, \text{ so } \frac{1}{2k-1} < \frac{1}{2N-1} \\ &= \frac{\frac{7}{2}}{2\left(\frac{7}{4\epsilon} + \frac{1}{2}\right) - 1} \quad \text{since } N = \frac{7}{4\epsilon} + \frac{1}{2} \\ &= \frac{\frac{7}{2}}{\left(\frac{7}{2\epsilon} + 1\right) - 1} \\ &= \frac{\frac{7}{2}}{\left(\frac{7}{2\epsilon}\right)} \\ &= \frac{7}{2} \cdot \frac{2\epsilon}{7} \\ &= \epsilon. \end{aligned}$$

(c) $a_n = \frac{n^2+2}{n^2-3}, L = 1.$ Answer:

> ANSWER (a possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N = \sqrt{\frac{5}{\epsilon}} + 3. \text{ Note that } N > 1. \text{ Then, if } k > N, \text{ we have}$ $|a_k - L| = \left| \frac{k^2 + 2}{k^2 - 3} - 1 \right|$ $= \left| \frac{k^2 + 2 - (k^2 - 3)}{k^2 - 3} \right|$ $= \left| \frac{2 + 3}{k^2 - 3} \right|$ $= \left| \frac{k^2}{k^2 - 3} \right|$ $= \frac{5}{k^2 - 3} \text{ because } k > N \text{ and } N > 1, \text{ so } k \le 2$ $< \frac{5}{N^2 - 3} \text{ since } k > N, \text{ so } \frac{1}{k^2 - 3} < \frac{1}{N^2 - 3}$ $= \frac{5}{\left(\sqrt{\frac{5}{\epsilon} + 3}\right)^2 - 3} \text{ because } N = \sqrt{\frac{1}{\epsilon} + 3}$ $= \frac{5}{\frac{5}{\epsilon} + 3 - 3}$ $= \frac{5}{\left(\frac{5}{(\frac{1}{\epsilon})}\right)}$ $= \epsilon.$

ANSWER (another possible answer): Let ϵ be a positive number (for simplicity, assume ϵ is smaller than 1). I choose $N = \frac{5}{\epsilon} + 3$. Note that N > 1. Then, if k > N, we have $|a_k - L| = \left| \frac{k^2 + 2}{k^2 - 3} - 1 \right|$ $= \left| \frac{k^2 + 2}{k^2 - 3} \right|$ $= \left| \frac{k^2 + 3}{k^2 - 3} \right|$ $= \left| \frac{k^2 + 3}{k^2 - 3} \right|$ $= \left| \frac{k^2 + 3}{k^2 - 3} \right|$ $= \frac{5}{k^2 - 3}$ because k > N and N > 1, so $k \le 2$ $< \frac{5}{k^2 - 3}$ since k > N, so $\frac{1}{k^2 - 3} < \frac{1}{2k^2 - 3}$ $= \frac{5}{\left(\frac{5}{\epsilon} + 3\right)^2 - 3}$ because $N = \frac{1}{\epsilon} + 3$ $= \frac{5}{\left(\frac{2\epsilon}{\epsilon^2} + \frac{30}{\epsilon} + 6\right)}$ because $N = \frac{1}{\epsilon} + 3$ $= \frac{5}{\left(\frac{30}{\epsilon^2}\right)}$ because $\frac{25}{\epsilon^2} + \frac{30}{\epsilon} + 6 > \frac{30}{\epsilon}$ $= \frac{5}{\left(\frac{30}{\epsilon^2}\right)}$

iii. The sequence $a_n = (5n+4)/(3n^2-2)$ converges to 0. Justify this fact by squeezing a_n between 0 and another sequence of type $b_n = (a \text{ constant})/n$ and using the Squeeze theorem. You may assume $\lim_{n\to\infty} (any \text{ constant})/n = 0$. See a similar (model) solution at: https://egunavan.github.io/falli7/hw/models.pdf Answer:

Scratch work (do not include) for Question iii: You can try some constant and check if that works, but the following is a sure way to get b_n which works.

Think, I want to find A n bigger than the numerator 5n + 4 and B n^2 smaller than the denominator $3n^2 - 2$ for all $n \ge$ some number. I want:

 $\begin{array}{l} 5n+4\leq A\ n \quad (\text{note how both sides are positive whenever }n\geq 1 \ \text{and} \ B \ \text{is positive}) \Leftrightarrow \\ \frac{5n+4}{n}\leq A\Leftrightarrow \\ 5+\frac{4}{n}=\frac{5n}{n}+\frac{4}{n}\leq A. \end{array}$

Since the left hand-side of this inequality is a decreasing sequence (for n = 1, 2, 3, ...), we have $5 + \frac{4}{n} \le 5 + \frac{1}{4}$, so I can choose $A = 5 + \frac{1}{4}$ or A = 6.

I want:

 $B n^2 \leq 3n^2 - 2$ (note how both sides are positive whenever $n \geq 1$ and B is positive) \Leftrightarrow

$$B \leq \frac{3n^2 - 2}{n^2} \Leftrightarrow$$
$$B \leq \frac{3n^2}{n^2} - \frac{2}{n^2} \Leftrightarrow$$
$$B \leq 3 - \frac{2}{n^2}.$$

Since the right hand-side of this inequality is an increasing sequence (for n = 1, 2, 3, ...), we have $3 - \frac{2}{1^2} \le 3 - \frac{2}{n^2}$ (for $n \ge 1$), so I can choose B = 3 - 2 = 1 or any smaller positive B.

ANSWER (what I submit) for Question iii (a possible answer): Note that, if n = 1, 2, 3, ..., we have

$$0 \le \frac{5n+4}{3n^2-2},$$

and

$$\frac{5n+4}{3n^2-2} \leq \frac{6n}{3n^2-2} \quad \text{because } 5n+4 \leq 6n \text{ for } n \geq 1$$
$$\leq \frac{6n}{n^2} \quad \text{because } n \leq 3n^2-2 \text{ for } n \leq 1$$
$$= \frac{6}{n}.$$
$$0 \leq \frac{5n+4}{3n^2-2} \leq \frac{6}{n} \quad \text{for } n \geq 1$$

Since

AND

by the Squeeze Theorem (Stewart top of pg 698 and see also Fig. 7) we have

$$\lim_{n \to \infty} \frac{5n+4}{3n^2-2} = 0.$$

 $\lim_{n \to \infty} 0 = 0 = \lim_{n \to \infty} \frac{6}{n}$

- iv. Either give an example satisfying the condition or explain why no such sequence exists.
 - (a) A monotonically decreasing sequence that converges to 10. Answer: (possible answers) $\left\{10 + \frac{1}{n}\right\}_{n=1}^{\infty}$ or $\left\{10 + \frac{1}{2^n}\right\}_{n=1}^{\infty}$
 - (b) A monotonically increasing bounded sequence that does not converge (that is, diverges). Answer: No such sequence exists because the monotone sequence theorem says: if a sequence is monotonically increasing and bounded, then it converges.
 - (c) A non-monotonic sequence that converges to 4. Answer: (a possible answer) $\left\{\left(\frac{-1}{2}\right)^n + \frac{3}{4}\right\}$ converges to $0 + \frac{3}{4}$ and is not monotonic.

24. (Sec 11.2 telescoping sum)

- (a) (i.) Find a formula for the *n*-th partial sum S_n of the series $\sum_{k=2}^{\infty} \frac{5}{k^2 1}$.
 - (ii.) Evaluate $\lim_{n\to\infty} S_n$.
 - (iii.) Use the previous part to determine the sum of the series $\sum_{k=2}^{\infty} \frac{5}{k^2-1}$ or state that the series diverges.
- (b) (i.) Find a formula for the *n*-th partial sum S_n of the series $\sum_{k=1}^{\infty} \frac{2}{\sqrt{k}} \frac{2}{\sqrt{k+3}}$.
 - (ii.) Evaluate $\lim_{n\to\infty} S_n$.
 - (iii.) Use the previous part to determine the sum of the series $\sum_{k=1}^{\infty} \frac{2}{\sqrt{k}} \frac{2}{\sqrt{k+3}}$ or state that the series diverges.
- 25. (Sec 11.2 geometric series and decimal expansion)
 - (a) Use geometric series to write $2.74\bar{9}=2.74999999\ldots$ as a fraction. Answer:

$2.74\overline{9} = 2.749999999$ $= 2.74 + 9\frac{1}{100} + 9\frac{1}{1000} + 9\frac{1}{10000} +$ $= 2.74 + \frac{9}{100}\frac{1}{10} + \frac{9}{100}\frac{1}{100} + \frac{9}{100}\frac{1}{1000} +$ $= 2.74 + \frac{9}{100}\left(\frac{1}{10}\right)^{1} + \frac{9}{100}\left(\frac{1}{100}\right)^{2} + \frac{9}{100}\left(\frac{1}{1000}\right)^{3} +$ $= 2.74 + \frac{9}{100}\sum_{k=2}^{\infty} \left(\frac{1}{10}\right)^{k-1}$
$= 2.74 + \frac{9}{100} \frac{1}{10} + \frac{9}{100} \frac{1}{100} + \frac{9}{100} \frac{1}{1000} + \dots$ $= 2.74 + \frac{9}{100} \left(\frac{1}{10}\right)^1 + \frac{9}{100} \left(\frac{1}{100}\right)^2 + \frac{9}{100} \left(\frac{1}{1000}\right)^3 + \dots$
$= 2.74 + \frac{9}{100} \left(\frac{1}{10}\right)^1 + \frac{9}{100} \left(\frac{1}{100}\right)^2 + \frac{9}{100} \left(\frac{1}{1000}\right)^3 + \dots$
$= 2.74 + \frac{9}{100} \sum_{k=2}^{\infty} \left(\frac{1}{10}\right)^{k-1}$
$= 2.74 - \frac{9}{100} \left(\frac{1}{10}\right)^0 + \frac{9}{100} \sum_{k=1}^{\infty} \left(\frac{1}{10}\right)^{k-1}$
$= 2.74 - \frac{9}{100} + \frac{9}{100} \frac{1}{1 - \frac{1}{10}}$
$= 2.74 - \frac{9}{100} + \frac{9}{100} \frac{1}{\left(\frac{9}{10}\right)}$
$=\frac{274}{100}-\frac{9}{100}+\frac{10}{100}$
$=rac{275}{100}.$

- (b) Write a *different* decimal expansion for 2.749999999.... Answer: 2.75 is the other decimal expansion for 2.749999999....
- (c) Write the repeating decimal expansion $0.\overline{571428}$ as a fraction. Answer:

$$\begin{aligned} 0.\overline{571428} &= 571428 \left(\frac{1}{10^6}\right)^1 + 571428 \left(\frac{1}{10^6}\right)^2 + 571428 \left(\frac{1}{10^6}\right)^3 + \dots \\ &= 571428 \sum_{k=2}^{\infty} \left(\frac{1}{10^6}\right)^{k-1} \\ &= -571428 \left(\frac{1}{10^6}\right)^0 + 571428 \sum_{k=1}^{\infty} \left(\frac{1}{10^6}\right)^{k-1} \\ &= -571428 + 571428 \frac{1}{1 - \frac{1}{10^6}} \quad \text{(you should stop here } \dots) \\ &= -571428 + 571428 \frac{10^6}{999,999} \quad \text{(or here, since you don't have a computing tool)} \\ &= -571428 + (4,000,000/7) \\ &= 4/7 \end{aligned}$$

(d) (i) Determine whether the series $\sum_{k=1}^{\infty} 2^{2k} 3^{1-k}$ is convergent or divergent. (ii) If it is convergent, compute the sum.

Answer: a divergent geometric series

(e) (i) Determine whether the series

$$\sum_{k=1}^{\infty} 2^{2k} 3^{5-2k} + 7^{k+1} 10^{-k} + 3^{k+1} 4^{-k}$$

is convergent or divergent. (ii) If it is convergent, compute the sum. Answer: The sum of three convergent geometric series.

(f) (i) Find a closed-form formula for the *n*th term in the sequence $\left\{3, -4, \frac{16}{3}, -\frac{64}{9}, \ldots\right\}$. (ii) Use it to determine whether the series

$$3-4+\frac{16}{3}-\frac{64}{9}+\ldots$$

is convergent or divergent. (iii) If it is convergent, compute the sum. Answer: a divergent geometric series.

(g) (i) Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^n}{e^{2n-1}}$ is convergent or divergent. (ii) If it is convergent, compute the sum.