1. (9.3 from reading homework)
(a) Draw a rough sketch of a possible solution to the logistic differential equation $\frac{d P}{d t}=$ $5 P\left(1-\frac{P}{8}\right)$. You do not need to solve this differential equation to draw a rough sketch. Hint: Explained in https://wwn.khanacadeny.org/math/ap-calculus-bc/bc-diff-equations/bc-1ogistic-models/e// logistic-differential-equation
2. (9.3 from WebAssign)
(a) Find the solution of the differential equation that satisfies the given initial condition.

$$
\frac{d y}{d x}=\frac{x}{y}, \quad y(0)=-9
$$

(b) Find the solution of the differential equation that satisfies the given initial condition.

$$
x y^{\prime}+y=y^{2}, \quad y(1)=-8
$$

(c) Consider the differential equation

$$
\left(x^{2}+15\right) y^{\prime}=x y
$$

1. Find all constant solutions.
2. Find all solutions.
(d) The differential equation below models the temperature of a $86^{\circ} \mathrm{C}$ cup of coffee in a $20^{\circ} \mathrm{C}$ room, where it is known that the coffee cools at a rate of $1^{\circ} \mathrm{C}$ per minute when its temperature is $70^{\circ} \mathrm{C}$. Solve the differential equation to find an expression for the temperature of the coffee at time t. (Let y be the temperature of the cup of coffee in ${ }^{\circ} C$, and let t be the time in minutes, with $t=0$ corresponding to the time when the temperature was $86^{\circ} \mathrm{C}$.)

$$
\frac{d y}{d t}=-\frac{1}{50}(y-20)
$$

(e) A tank contains 8000 L of brine with 14 kg of dissolved salt. Pure water enters the tank at a rate of $80 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate.

1. How much salt is in the tank after t minutes?
2. How much salt is in the tank after 20 minutes?
(f) 1. Find the orthogonal trajectories of the family of curves

$$
y^{2}=8 k x^{3}
$$

2. Sketch these orthogonal trajectories.
