Math 1152, Fall 2017 — Final Exam Fact Sheet

December 15

Definition of limit. A sequence $\{a_n\}$ has the **limit** L and we write $\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$ if for every $\epsilon > 0$ there is a corresponding positive N such that n > N then $|a_n - L| < \epsilon$ if **Definition of limit at infinity.** We write $\lim_{n \to \infty} a_n = \infty \quad \text{or} \quad a_n \to \infty \text{ as } n \to \infty$ if for every M > 0 there is a corresponding positive N such that if n > N then $a_n > M$ **L'Hôpital's rule.** Suppose f, g are differentiable functions and $\lim_{x \to \infty} f(x)$ and $\lim_{x\to\infty} g(x)$ are both 0 or both $\pm\infty$. Then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$ Squeeze theorem for sequences. If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$. Monotonic sequence theorem. Every bounded, monotonic sequence is convergent. **Definition of convergence for series.** Consider the series $\sum_{n=1}^{\infty} a_n$. Then $s_N = \sum_{i=1}^N a_n$ is called the Nth partial sum of the infinite series. • if $\lim_{N \to \infty} s_N = s$ then the series $\sum_{n=1}^{\infty} a_n$ converges to s. • if $\lim_{N\to\infty} s_N$ does not exist, then $\sum_{n=1}^{\infty} a_n$ diverges.

Geometric series. A series of the form $\sum ar^n$ is called a **geometric series**.

- if |r| < 1 then the series converges and $\sum_{n=0}^{\infty} ar^n = a/(1-r)$.
- if $|r| \ge 1$ then the series diverges.

Divergence test. Consider the series $\sum a_n$. If $\lim_{n \to \infty} a_n \neq 0$ then $\sum a_n$ diverges.

p-series test. A series of the form

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \quad \text{is called a } p \text{-series.}$$

- if $p \leq 1$ then the series diverges
- if p > 1 then the series converges

Comparison test. Consider the series $\sum a_n$ with $a_n \ge 0$ for all n.

- if $a_n \leq b_n$ for all n and $\sum b_n$ converges, then $\sum a_n$ converges
- if $a_n \ge b_n$ for all n and $\sum b_n$ diverges, then $\sum a_n$ diverges

Limit comparison test. Consider the series $\sum a_n$ and $\sum b_n$ with $a_n, b_n \ge 0$ for all n and suppose that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0.$$

Then $\sum a_n$ and $\sum b_n$ either both converge or both diverge.

Alternating series test. A series of the form

$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n$$

where $b_n \ge 0$ for all *n* is called an alternating series. If

- 1. $b_{n+1} \leq b_n$ for all *n* large enough (ie. $\{b_n\}$ is an eventually decreasing sequence)
- 2. $\lim_{n\to\infty} b_n = 0$

then the series **converges**.

Ratio test. Consider the series $\sum_{n=1}^{\infty} a_n$ and suppose that

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

1. if L < 1 then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

- 2. if L > 1 or $L = \infty$ then $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. if L = 1 then the test is inconclusive.

Fundamental Theorem of Calculus, part I. If f is continuous on [a, b], then function q defined as $g(x) = \int^x f(t) dt, \quad a \le x \le b$ satisfies q'(x) = f(x). Fundamental Theorem of Calculus, part II. If f is continuous on [a, b], then $\int^{b} f(x) \, dx = F(b) - F(a)$ where F is any anti-derivative of f (ie. F is any function such that F' = f). Integration by parts fomula. $\int u \, dv = uv - \int v \, du$ **Integral test.** If f is continuous, non-negative, and decreasing on $[1, \infty)$ and $a_n =$ f(n), then $\sum_{n=1}^{\infty} a_n \text{ converges if and only if } \int_1^{\infty} f(x) \, dx \text{ converges.}$ Useful trig facts. $\sin^2 \theta + \cos^2 \theta = 1$, $\tan^2 \theta + 1 = \sec^2 \theta$ $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta), \quad \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta, \quad \sin 2\theta = 2\sin \theta \cos \theta$ $\sin\frac{\pi}{6} = \frac{1}{2}, \quad \sin\frac{\pi}{2} = \frac{\sqrt{3}}{2},$ $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad \cos\frac{\pi}{3} = \frac{1}{2},$ $\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ Some derivatives. $\frac{d}{dx}b^x = \ln(b)b^x$ $\frac{d}{dx}\sin(x) = \cos(x) \qquad \qquad \frac{d}{dx}\cos(x) = -\sin(x) \qquad \qquad \frac{d}{dx}\tan(x) = (\sec(x))^2$ $\frac{d}{dx}\csc(x) = -\csc(x)\cot(x) \quad \frac{d}{dx}\sec(x) = \sec(x)\tan(x) \quad \frac{d}{dx}\cot(x) = -\left(\csc(x)\right)^2$

Power series coefficients. If
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
, then

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Table 1: Important Maclaurin Series and their Radii of Convergence

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots \qquad R = 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \qquad R = \infty$$

$$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \qquad R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \qquad R = 1$$

$$(1+x)^{k} = \sum_{n=0}^{\infty} \binom{k}{n} x^{n} = 1 + kx + \frac{k(k-1)}{2!} x^{2} + \frac{k(k-1)(k-2)}{3!} x^{3} + \cdots \quad R = 1$$

Tangents and areas. Suppose f and g are differentiable functions. Consider the curve defined by the parametric equations

$$\begin{aligned} x &= f(t) \\ y &= g(t), \end{aligned}$$

where y is a differentiable function of x. Then

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} \quad \text{if} \quad \frac{dx}{dt} \neq 0.$$

The area under the curve from x = a to x = b which is traced out *once* by the curve, $\alpha \le t \le \beta$, can be calculated as follows:

$$\int_{a}^{b} y \, dx = \int_{\alpha}^{\beta} g(t) f'(t) \, dt, \text{ or}$$
$$\int_{a}^{b} y \, dx = \int_{\beta}^{\alpha} g(t) f'(t) \, dt.$$