Table 1: Important Maclaurin Series and their Radii of Convergence

$$
\begin{array}{ll}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots & R=1 \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots & R=\infty \\
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots & R=\infty \\
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots & R=\infty \\
\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots & R=1 \\
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots & R=1 \\
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots & R=1
\end{array}
$$

Alternating Series Estimation Theorem

If $S:=\sum_{k=r}^{\infty}(-1)^{k} b_{k}$, where $b_{k}>0$, is the sum of an alternating series that satisfies
(i) $b_{k+1} \leq b_{k} \quad$ and
(ii) $\lim _{k \rightarrow \infty} b_{k}=0$,
then $\left|R_{N}\right|=\left|S-S_{N}\right| \leq b_{N+1}$, where $S_{N}:=\sum_{k=r}^{N}(-1)^{k} b_{k}$.

Taylor's Inequality

If $\left|f^{n+1}(x)\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { for }|x-a| \leq d
$$

Volume

The solid obtained by rotating the region under the curve $y=f(x)$ from a to b about the x-axis has volume

$$
\int_{a}^{b} \pi(\text { radius })^{2} \mathrm{dx}=\int_{a}^{b} \pi(\mathrm{f}(\mathrm{x}))^{2} \mathrm{dx}
$$

Useful trig facts.

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1, \quad \tan ^{2} \theta+1=\sec ^{2} \theta \\
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta), \quad \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \\
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta, \quad \sin 2 \theta=2 \sin \theta \cos \theta \\
\sin \frac{\pi}{6}=\frac{1}{2}, \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{3}=\frac{1}{2} \\
\sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}
\end{gathered}
$$

Some derivatives.

$$
\begin{array}{ll}
\frac{d}{d x} b^{x}=\ln (b) b^{x} \\
\frac{d}{d x} \sin (x)=\cos (x) & \frac{d}{d x} \cos (x)=-\sin (x) \\
\frac{d}{d x} \csc (x)=-\csc (x) \cot (x) & \frac{d}{d x} \sec (x)=\sec (x) \tan (x)=(\sec (x))^{2} \\
\frac{d}{d x} \cot (x)=-(\csc (x))^{2}
\end{array}
$$

Fundamental Theorem of Calculus, part I.

If f is continuous on $[a, b]$, then function g defined as

$$
g(x)=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

satisfies $g^{\prime}(x)=f(x)$.

Fundamental Theorem of Calculus, part II.

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any anti-derivative of f (ie. F is any function such that $F^{\prime}=f$).

Integration by parts fomula.

$$
\int u d v=u v-\int v d u
$$

