Last updated on 2016/10/17 at 13:04:02. Please inform me of mistakes.

0.1 Topic: Evaluating limits

1. Let F(t) be a function defined by

$$F(t) = \frac{t^2 + 3t - 1}{5}.$$

(a) Evaluate

$$\lim_{t \to 0} F(t)$$

Answer:

$$\lim_{t \to 0} F(t) = F(0) \text{ by direct substitution}$$
$$= \frac{0^2 + 3(0) - 1}{5}$$
$$= \frac{-1}{5}$$

(b) Evaluate $\lim_{t \to 1} F(t)$ Answer:

$$\lim_{t \to 1} F(t) = F(1) \text{ by direct substitution}$$
$$= \frac{1^2 + 3(1) - 1}{5}$$
$$= \frac{3}{5}$$

- (c) Identify any points at which F is discontinuous. Answer: None, F is continuous over $(-\infty, +\infty)$.
- 2. Evaluate $\lim_{t \to 0} 7 + x \sqrt{7} + \frac{x+2}{x+1}$. Answer: $7 \sqrt{7} + 2 = 9 \sqrt{7}$
- 3. Evaluate $\lim_{t\to 0^+} \frac{\sqrt{7+x}-\sqrt{7-x}}{2x}$. Answer: $\frac{1}{2\sqrt{7}}$
- 4. Evaluate $\lim_{t\to 1^-} \frac{\sqrt{2x+1}-\sqrt{3}}{x-1}$. Answer: This is from p247 #9. Multiply both top and bottom by the conjugate $\sqrt{2x+1}+\sqrt{3}$. Your final answer should be $\frac{1}{\sqrt{3}}$.

0.2 Topic: Identifying Vertical asymptotes analytically

Identify the vertical asymptotes (if any) of following functions. If the function has no vertical asymptotes, say so.

1.

$$f(t) = \frac{5}{t^{10} - 2t^9}.$$

Answer: First, we identify the points at which f is not continuous. To do this, we solve

 $0 = t^{10} - 2t^9$. But $t^{10} - 2t^9 = t^9(t-2)$. So either $t^9 = 0$ or t = 2. So the function is discontinuous at t = 0 and t = 2.

In order for t = c to be a vertical asymptote of f(t), we must have either $\lim_{t\to c} f(t) = +\infty$ or $\lim_{t\to c} f(t) = -\infty$.

We check that the denominator $t^{10} - 2t^9$ approaches 0 as t gets close to 0, and the numerator 5 approaches 5 as t gets close to 0. In class, we learned that this means that either $\lim_{t\to 0} f(t) = +\infty$ or $\lim_{t\to 0} f(t) = -\infty$.

Similarly, we check that $\lim_{t\to 2} f(t) = +\infty$ or $\lim_{t\to 2} f(t) = -\infty$.

Hence, t = 0 and t = 2 are the vertical asymptotes of f.

2.

$$g(x) = \frac{x+1}{(x-5)(x^3+1)}.$$

Answer: To identify where g is not continuous, we look for the zeroes of the denominator $(x-5)(x^3+1)$. By the zero-factor theorem (p151), we know that x = 5 must be a zero of g.

We also could see that x = -1 is a zero because $(-1)^3 + 1 = 0$. By the zero-factor theorem, we know that (x + 1) must be a factor of $(x^3 + 1)$. Hence we can divide $(x^3 + 1)$ evenly by (x + 1). We found that $(x^3 + 1) = (x + 1)(x^2 - x + 1)$. To find the other zeros of $(x^2 - x + 1)$, we set

$$0 = x^2 - x + 1.$$

Using the quadratic equation, we see that there are no real number solution. Therefore $(x^2 - x + 1)$ has no real roots (aka. real zeros). Hence the denominator of g has exactly two zeros, x = 5 and x = -1.

• First, we try to take the limit of g as x approaches -1.

$$\lim_{x \to -1} \frac{x+1}{(x-5)(x^3+1)} = \lim_{x \to -1} \frac{x+1}{(x-5)(x+1)(x^2-x+1)} \text{ as I have computed above}$$
$$= \lim_{x \to -1} \frac{1}{(x-5)(x^2-x+1)}$$
$$= \frac{1}{(-1-5)((-1)^2 - (-1) + 1)} \text{ using direct substitution}$$
$$= \frac{1}{6}.$$

Since $\lim_{x\to -1}$ exists, we know that $x = \frac{1}{6}$ is not a vertical asymptote of g. On the contrary, g has a removable discontinuity at $x = \frac{1}{6}$.

• Next, we try to take the limit of g as x approaches 5.

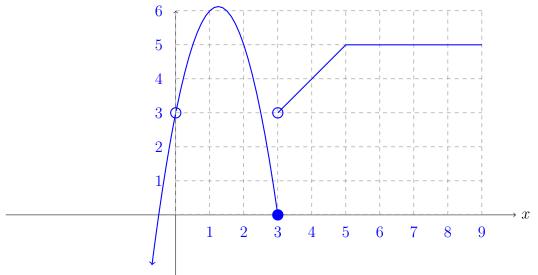
As we try to do so, we notice that $\lim_{x\to 5} x + 1 = 6 \neq 0$, and $\lim_{x\to 5} (x-5)(x^3+1) = (5-5)(5^3+1) = 0$. This was the last case that we learned in class, and we learned that x = 5 must be a vertical asymptote of g.

3. $h(x) = x^2 - 25x^2 + x + 3$.

Answer: This function has no vertical asymptote. In fact, this function is continuous everywhere. Why?

0.3 Topic: Reading and sketching graphs

The figure shows the graph of a function f(x).



Read the value graph; if it does not exist or is not defined, just say so.

- 1. $\lim_{\substack{x \to 0^- \\ \text{Answer: } 3}} f(x)$
- 2. $\lim_{x \to 0^+} f(x)$ Answer: 3
- 3. $\lim_{\substack{x \to 0 \\ \text{Answer: } 3}} f(x)$
- 4. $\lim_{x \to 3^{-}} f(x)$ Answer: 0
- 5. $\lim_{\substack{x \to 3^+ \\ \text{Answer: } 3}} f(x)$
- 6. $\lim_{x \to 3} f(x)$ Answer: The limit does not exist
- 7. $\lim_{\substack{x \to 4^- \\ \text{Answer: } 4}} f(x)$
- 8. $\lim_{x \to 4^+} f(x)$ Answer: 4

9.
$$\lim_{x \to 4} \frac{f(x)}{11}$$
Answer: $\frac{4}{11}$

10. $\lim_{\substack{x \to 5^- \\ \text{Answer: 5}}} f(x)$

11.	$\lim_{\substack{x \to 5^+ \\ \text{Answer: 5}}} f(x)$
12.	$\lim_{\substack{x \to 5 \\ \text{Answer: } 5}} \frac{f(x)}{x}$
13.	$\lim_{\substack{x \to 7^- \\ \text{Answer: 5}}} f(x)$
14.	$\lim_{\substack{x \to 7^+ \\ \text{Answer: 5}}} f(x)$
15.	$\lim_{x \to 7} \frac{x+1}{f(x)}$ Answer: 5
16.	f(0) Answer: f is not defined at 0.
17.	f(3) Answer: 0
18.	f(4) Answer: 4
19.	f(5) Answer: 5
20.	f(6) Answer: 5
21.	f(7) Answer: 5
22.	For each part, answer True / False
	(a) f is continuous on [0,2]. Answer: False
	(b) f is continuous on (0,2). Answer: True
	(c) f is continuous on [1,3]. Answer: True
	(d) f is continuous on (1,3). Answer: True
	(e) f is continuous on [3,5]. Answer: False
	(f) f is continuous on (3,5). Answer: True

- (g) f is continuous on [3,6]. Answer: False
- (h) f is continuous on (3,6). Answer: True
- (i) f is continuous on [4,6]. Answer: True
- (j) f is continuous on (4,6). Answer: True
- 23. For each part, answer True / False

- (a) $\lim_{x\to 0^-} f(x) = f(0)$. Answer: False
- (b) f is continuous at 0. Answer: True
- (c) f has a removable discontinuity at 0. Answer: True
- (d) f has a non-removable discontinuity at 0. Answer: False
- (e) $\lim_{x\to 2^+} f(x) = f(2)$. Answer: True
- (f) f is continuous at 2. Answer: True
- (g) f has a removable discontinuity at 2. Answer: False
- (h) f has a non-removable discontinuity at 2. Answer: False
- (i) $\lim_{x\to 3^-} f(x) = f(3)$. Answer: True
- (j) f is continuous at 3. Answer: False
- (k) f has a removable discontinuity at 3. Answer: False
- (l) f has a non-removable discontinuity at 3. Answer: True
- (m) $\lim_{x \to 0} f(x) = f(5)$. Answer: True
- (n) f is continuous at 5. Answer: True
- (o) f has a removable discontinuity at 5. Answer: False
- (p) f has a non-removable discontinuity at 5. Answer: False
- (q) f is continuous on (1,3). Answer: True
- (r) f is continuous on [3,5]. Answer: False
- (s) f is continuous on (3,5). Answer: True
- (t) f is continuous on [3,6]. Answer: False
- (u) f is continuous on (3,6). Answer: True
- (v) f is continuous on [4,6]. Answer: True
- (w) f is continuous on (4,6). Answer: True
- 24. For each part, set up suitable axes and sketch the graph of a function satisfying all the given conditions. Make your drawing as clear as possible. If I cannot tell whether it's correct, I'll assume it's not.
 - (a) f(1)=2; f has a removable discontinuity at 1, but f is continuous everywhere else.
 - (b) f(1) is not defined; f has a removable discontinuity at 1, but f is continuous everywhere else.
 - (c) f(1)=2; f has a non-removable discontinuity at 1, but f is continuous everywhere else.
 - (d) f(1) is not defined; f has a non-removable discontinuity at 1, but f is continuous everywhere else.
 - (e) f is continuous everywhere except at x = 2 and x = 5, and $\lim_{x \to 2} f(x) = +\infty$ and $\lim_{x \to 5} f(x) = -\infty$.
 - (f) f is continuous on (2,5), and $\lim_{x\to 2^+} f(x) = +\infty$ and $\lim_{x\to 5^-} f(x) = +\infty$.
 - (g) f is continuous on (2,5), and $\lim_{x\to 2^+} f(x) = +\infty$ and $\lim_{x\to 5^-} f(x) = -\infty$.
 - (h) f is continuous on (2,5), and $\lim_{x\to 2^+} f(x) = -\infty$ and $\lim_{x\to 5^-} f(x) = -\infty$

0.4 Topic: Intermediate Value Theorem

1. Fill each blank with either an English word or a mathematical symbol so that the following is a complete and accurate statement of the Intermediate Value Theorem.

If a _____ f(x) is _____ on the _____ interval [a, b], and a number M is between _____ and ____, then there is at least one point c in _____ where ____ = ___.

- 2. For each part, answer either True or False. For all parts, assume that f is continuous on [0, 2], that f(0) = -10 and f(2) = 10.
 - (a) There must be at least one value c in (0, 2) where f(c) = 10. Answer: False. Counterexample: the linear function which passes through both (0, f(0)) and (2, f(2)).
 - (b) There must be at least one value c in [0, 2] where f(c) = 10. Answer: True. For example, c = 2 works.
 - (c) There must be at least one value c in [0,2] where f(c) = -1. Answer: True. Reasoning: the Intermediate Value Theorem.
 - (d) There must be at least one value c in [0, 2] where f(c) = -20. Answer: False. Counterexample: the linear function which passes through both (0, f(0)) and (2, f(2)).
 - (e) f(1) must be between -10 and 10. Answer: False.

0.5 Topic: Evaluating limits (part 2)

Evaluate the following limits. Whenever appropriate, answer with $+\infty$ or $-\infty$.

1.
$$\lim_{x \to 2^{+}} \frac{x}{x-2}$$
. Answer:
$$\lim_{x \to 2^{+}} \frac{x}{x-2} = +\infty$$

2.
$$\lim_{x \to 2^{+}} \frac{1-x}{(x-2)^{2}}$$
. Answer:
$$\lim_{x \to 2^{+}} \frac{1-x}{(x-2)^{2}} = -\infty$$

3.
$$\lim_{x \to 5^{-}} \frac{5-x}{(x-2)^{2}}$$
. Answer:
$$\lim_{x \to 5^{-}} \frac{5-x}{(x-2)^{2}} = \frac{0}{9} = 0.$$

4.
$$\lim_{x \to 5^{+}} \frac{5+x}{(x-2)^{2}}$$
. Answer:
$$\lim_{x \to 5^{+}} \frac{5+x}{(x-2)^{2}} = \frac{10}{9}.$$

5.
$$\lim_{x \to -1^{+}} \frac{x^{3}+1}{x+1}.$$

Answer:
$$\lim_{x \to (-1)^{+}} \frac{x^{3}+1}{x+1} = \lim_{x \to (-1)^{+}} \frac{(x+1)(x^{2}-x+1)}{x+1} = \lim_{x \to (-1)^{+}} x^{2}-x+1 = 3.$$