
Math 118 Calculus Ia

Assume that f(x) is a differentiable function on the interval [a, b], as shown in the graph.

The slope of the secant line, expressed in terms of f, is

Let's call that slope above m for short. Now, write down an equation for this secant line in point-slope form:

Rewriting this point-slope form equation, we see that the linear function L(x) describing the secant line is given by

$$L(x) =$$

Let g(x) denote the difference between the functions f(x) and L(x). In symbols, that is,

g(x) =_____

By the Sum/Difference rule for derivatives, we know that g is ______ on [a, b] and

g'(x) =_____

And since L(x) is a linear function with slope m, that can be written more simply as

	g'(x) =	
Also, we can see that $g(a) = _$	and $g(b) = $	
So, we can apply	Theorem to the function	on the interval
That lets us conclude that the	re is at least one point c in	where
But $g'(c) =$. So we can conclude that	, qed.