Math 118 Calculus Ia Increase and Decrease, Max and Min

1. Assume that f is a differentiable function. The sign of f/(z) is shown on the following chart.
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a. Complete the following sentences (the words positive, negative, increasing, and /or decreasing are relevant).
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e. How many relative maxima does f have?
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f. Make a rough sketch of the graph of f(z) showing the correct increasing/decreasing behavior.
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For the remaining questions, assume f(z) is a polynomial.

g. Describe the end behavior of f as we would have done earlier in the semester: f is s(v\g to the left

and (:"*“i!ﬁf to the right.
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h. True/False: The function f(z) must have at least one real zero. (Explain!)
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i. What’s the smallest possible degree f(z) could have?
(As always, explain!)
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2. Suppose f'(x) = —2z%(z — 3).
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c. How many times does f’ change sign (from positive to negative, or vice versa)?
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d. How many relative minima does f have? (Where do they occur, if at all?)
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e. How many relative maxima does f have? (Where do they occur, if at all?)
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3. Let f(z) = z* + 222. Compute f'(z) and carry out parts (a)-(e) for this function as in #2.
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Increase/Decrease/Max/Min #1

Here’s a polynomial f(x) whose derivative would match the pattern shown in the sign chart.
| have the computer find and factor f(x) so you can see the critical points are at x=2, x=4 and x=8.

f[x_] :=(-1/5)x"5+4x"4-28x"3+88x"2-128x+10
f[x] // TraditionalForm
f'[x] // Factor // TraditionalForm
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Notice that the factor which occurs with an even power (x=2) in f(x) is the one that doesn’t give a sign
change in f(x), and doesn’t give a max or min on the graph of f(x). But f(x) has a relative min at x=4 and
a relative max at x=8, as predicted:

Plot[f[x], {x, -1, 9.5}, PlotRange » {-70, 120}]
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Increase/Decrease/Max/Min #2
Here’s a function f(x) that has the derivative given in #2 - | just use the computer to verify that the
derivative is what | wanted it to be (notice the computer puts the factors in kind of a weird order):

flx ] :=(-1/2)x"4+2x"3
£'[x]
Factor[f ' [x]]
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And here’s a plot of that function f(x) - notice there’s no max or min at x=0 (even though x=0 is a critical

number). There’s just a pause: the tangent line is horizontal at x=0 but then f(x) resumes increasing.

At x=3, we see the expected relative maximum. Based on the increasing/decreasing behavior of f(x),
you could actually have reasoned out that f(3) must actually be the absolute maximum value of f(x) - not
merely a relative max, but the actual biggest output that f ever produces.

Plot[£f[x], {x, -2, 5}]
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Increase/Decrease/Max/Min #3
flx ] :=x"4+2x"2

The plot of f(x) shows, as expected, just a minimum at x=0. We could have predicted the end behavior
just from the degree and the leading coefficient, but calculus shows there isn’t any other interesting
behavior in between - it just has the one turning point that it needs in order to rise on both ends.

Plot[f[x], {x, -1, 1}]




