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What is a cluster algebra? (Fomin and Zelevinsky, 2000)

• A (coe�cient-free) cluster algebra of rank n is a Z-subalgebra of Q(x1, . . . , xn) generated by elements called cluster variables :

– Start with an initial seed : a cluster x = {x1, x2, . . . , xn} and a skew-symmetrizable exchange matrix B = (b
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– Apply all possible sequences of mutations to produce all cluster variables (usually infinitely many).

• Laurent Phenomenon: each cluster variable can be expressed as a Laurent polynomial in {x1, . . . , xn}.

• Positivity: this Laurent polynomial has positive coe�cients (2014, [Lee and Schi✏er], [Gross, Hacking, Keel, and Kontsevich], and special cases by others).

Cluster algebras from orientable surfaces

Definition: ordinary arcs

• An ordinary arc � is a non-contractible curve between marked points
such that � does not cross itself or the boundary, and � is not homotopic
to a boundary edge.

• An ideal triangulation is a maximum collection of distinct arcs that
pairwise do not cross.

Definition: tagged arcs

• A tagged arc is an ordinary arc (which does not cut out a monogon with

1 puncture ` ) decorated (plain or with a ./) at each endpoint.

• A tagged triangulation is a maximum collection of distinct tagged arcs
that are pairwise “compatible”.

Theorem (Fomin, Shapiro, and Thurston, 2006)

One can define a cluster algebra from an orientable Riemann surface + interior points (called punctures) and/or marked points on the boundary:

seed (x
T

, B

T

) ! tagged triangulation T = {⌧1, . . . , ⌧n}
cluster variable x

�

 ! tagged arc �

cluster mutation ! “flipping diagonals”

Example: once-punctured 4-gon

A tagged triangulation of a once-punctured square  ! A quiver that is
mutation equivalent to an orientation of a type D4 Dynkin diagram.
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Example: once-punctured 3-gon
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tagged triangulations of a once-punctured n-gon.

Atomic bases

Definition: atomic bases (Sherman and Zelevinsky, 2003)

Let A be a (coe�cient-free) cluster algebra.

• Let the positive cone of A be A+ := {positive elements} =
{elements that are positive Laurent polynomials with respect to every
cluster}.

• The subset B of all indecomposable positive elements (i.e., those
that cannot be written as a sum of two positive elements) is called
the atomic basis if it forms a Z-basis of A.

The existence of this atomic basis is not known in general. The cluster
algebra with the exchange matrix

✓
0 b

�c 0

◆
has no atomic basis if bc � 5.

Result 2: Combinatorial proof (by

T-path) for type D cluster algebras

Definition: cluster monomial

a cluster monomial is a product of cluster variables all coming from the
same cluster, e.g. a5be2 is a cluster monomial if {a, b, c, d, e} is a cluster.

Theorem (atomic basis)

For a cluster algebra of type A, D, or E, the basis of cluster monomials
is atomic.

– Representation theory proof by [Cerulli Irelli, 2011] and [Cerulli Irelli,
Keller, Labardini-Fragoso, and Plamondon, 2012].

– We give a combinatorial proof (using the T -path formula) for type D,
inspired by work on types A and e

A by [Dupont and Thomas, 2011].

Result 1: T-path formula for cluster variables for punctured surfaces

We generalize (to surfaces with punctures) Schi✏er and Thomas’ T -path definition and formula for unpunctured surfaces (2009).
Let To be an ideal triangulation and � an ordinary arc that crosses To. Let 4

k

denote the k-th ideal triangle crossed by �.

Definition: quasi-arc

If ⌧ is an ordinary arc, let an associated quasi-arc ⌧

0 be a curve (not passing through the puncture P) which agrees with ⌧

outside of a small radius-✏ disk D

✏

around P .

Definition: T -path

A (complete) (To

, �)-path w = (w1, . . . , w2d+1) is a concatenation of quasi-arcs and boundary edges such that:

(T1) Each even step w2k (k = 1, . . . , d) is the k-th arc that � crosses.

(T2) The path w is homotopic to �, and satisfies the following:
Let p1, . . . , pd be the intersection points of � and T

o. Let �
k

be the segment along � between p

k

and p

k+1. Then the segment �
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is homotopic to the segment from p
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following w2k, following w2k+1, following w2k+2 until pk+1.

(T3) The step w2k+1 traverses a side of the triangle4k

, and starts and finishes in the interior of4
k

or at a boundary marked
point.

Theorem (T -path formula)
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Fig. 2: Four of the nine (T o

, �)-paths from the first figure. All backtracks (2, 2) and (`, `) have been omitted.
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Fig. 3: The four (T o

, �)-paths of the ideal triangulation T

o and the arc � of the first figure.
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Fig. 4: Three of the five (T o

, �)-paths of the ideal triangulation T

o and the arc � of the first figure.

Atomic bases for other surfaces

Conjecture (Fomin, Shapiro, and Thurston, 2008,

unpublished, based on Fock and Goncharov, 2006)

A candidate for atomic bases: the “bracelets collection” consisting of all
cluster monomials + a class of elements. A bracelet is a closed loop in the
interior of the surface which wraps around itself once or multiple times
and avoids marked points.

– True for annuli, type e
A (Dupont and Thomas, 2011).

– The bracelets collection forms a basis for unpunctured surfaces
(Musiker, Schi✏er, and Williams, 2011).

Current work: type a�ne D

Type e
D

n�1 cluster algebras ((n�3)-gons with 2 punctures), e.g. type e
D6

cluster algebra comes from a twice-punctured disk with 4 marked points
on the boundary.
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We work with cluster
algebras with principal
coe�cients
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A cluster monomial corresponds to
a multi-tagged dissection (i.e. a
partial tagged triangulation allow-
ing multiple copies of tagged arcs).

new

In addition, we have:

– a similar formula for cluster
algebras with principal and
arbitrary coe�cient systems

– a T -path formula for a
tagged arc with ./ on its end-
point/s

The T -paths are in
natural bijection
with Musiker,
Schi✏er, and
Williams’ snake

graph matchings.

Also, a (complete)

T -path is uniquely
determined by its
sequence of labels.
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