Math 3094 Humphreys Sec 1.3 Notes

E. Gunawan, University of Connecticut

Fall 2018

Proof of Theorem in Section 1.3 of Humphreys

Let Π be a positive system of a root system Φ. Suppose D is a minimal subset of Φ subject to the requirement that
each root in Π is a nonnegative linear combination of D.
Prove that

$$
\langle\alpha, \beta\rangle \leq 0 \text { for all pairs } \alpha \neq \beta \in D .
$$

How to do this problem: This inequality statement is labeled (1) on [Hum90, page 8]. The inequality is proven on [Hum90, page 9]. You can also read [Der14, page 34].

Proof. Suppose $\langle\beta, \alpha\rangle>0$ for some $\alpha \neq \beta \in D$. Then the formula for a reflection gives

$$
s_{\alpha}(\beta)=\beta-c \alpha, \quad \text { with } c=2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}>0 .
$$

To see this, recall that $\langle\alpha, \alpha\rangle>0$ because \langle,$\rangle is an inner product (i.e.,$ positive definite symmetric bilinear form) on \mathbb{R}^{n}. Since $s_{\alpha}(\beta) \in \Phi=\Pi \cup-\Pi$, either $s_{\alpha}(\beta) \in \Pi$ or $-s_{\alpha}(\beta) \in \Pi$. The argument that the former case is impossible is done in [Hum90, Section 1.3], and we will now show that the latter case is also impossible.

Suppose $-s_{\alpha}(\beta) \in \Pi$. Then

$$
\begin{aligned}
-s_{\alpha}(\beta) & =\sum_{\gamma \in \Delta} c_{\gamma} \gamma \text { with } c_{\gamma} \geq 0 \text { by definition of } D \\
& =c_{\alpha} \alpha+\sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma} \gamma .
\end{aligned}
$$

Hence

$$
\begin{equation*}
-s_{\alpha}(\beta)=-\beta+c \alpha=c_{\alpha} \alpha+\sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma} \gamma \tag{2}
\end{equation*}
$$

In case $c_{\alpha}<c$, equation (2) implies

$$
\left(c-c_{\alpha}\right) \alpha=\beta+\sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma} \gamma,
$$

which is a non-negative linear combination of $D \backslash\{\alpha\}$. Since $0<c-c_{\alpha}$, this allows us to discard α from the subset D and still have a subset satisfying the requirement (1), contradicting the minimality of D.

In case $c<c_{\alpha}$, equation (2) gives

$$
0=\left(c_{\alpha}-c\right) \alpha+\beta+\sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma} \gamma
$$

which is a non-negative linear combination of D. But all these roots are positive and the coefficient for β has a positive coefficient (at least 1), so the right hand side cannot equal to 0 (by definition of total ordering).

We've shown that $-s_{\alpha}(\beta) \notin \Pi$. Since $s_{\alpha}(\beta) \notin \Pi$ as shown in [Hum90, Section 1.3], we have $\alpha(\beta) \notin \Phi$, which is a contradiction.

References

[Der14] Aram Dermenjian. Crystallographic Root Systems, 2014. https://egunawan.github.io/coxeter/text/dermenjian_ survey_crystallographic_root_systems.pdf.
[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

