Math 3094 Humphreys Sec 1.3 Notes

E. Gunawan, University of Connecticut

Fall 2018

Proof of Theorem in Section 1.3 of Humphreys

Let Π be a positive system of a root system Φ . Suppose D is a minimal subset of Φ subject to the requirement that

each root in Π is a nonnegative linear combination of D. (1)

Prove that

$$\langle \alpha, \beta \rangle \leq 0$$
 for all pairs $\alpha \neq \beta \in D$.

How to do this problem: This inequality statement is labeled (1) on [Hum90, page 8]. The inequality is proven on [Hum90, page 9]. You can also read [Der14, page 34].

Proof. Suppose $\langle \beta, \alpha \rangle > 0$ for some $\alpha \neq \beta \in D$. Then the formula for a reflection gives

$$s_{\alpha}(\beta) = \beta - c\alpha$$
, with $c = 2 \frac{\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} > 0$.

To see this, recall that $\langle \alpha, \alpha \rangle > 0$ because \langle , \rangle is an inner product (*i.e.*, positive definite symmetric bilinear form) on \mathbb{R}^n . Since $s_{\alpha}(\beta) \in \Phi = \Pi \cup -\Pi$, either $s_{\alpha}(\beta) \in \Pi$ or $-s_{\alpha}(\beta) \in \Pi$. The argument that the former case is impossible is done in [Hum90, Section 1.3], and we will now show that the latter case is also impossible.

Suppose $-s_{\alpha}(\beta) \in \Pi$. Then

$$-s_{\alpha}(\beta) = \sum_{\gamma \in \Delta} c_{\gamma} \gamma \text{ with } c_{\gamma} \ge 0 \text{ by definition of } D$$
$$= c_{\alpha} \alpha + \sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma} \gamma.$$

Hence

$$-s_{\alpha}(\beta) = -\beta + c\alpha = c_{\alpha}\alpha + \sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma}\gamma.$$
⁽²⁾

In case $c_{\alpha} < c$, equation (2) implies

$$(c - c_{\alpha})\alpha = \beta + \sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma}\gamma,$$

which is a non-negative linear combination of $D \setminus \{\alpha\}$. Since $0 < c - c_{\alpha}$, this allows us to discard α from the subset D and still have a subset satisfying the requirement (1), contradicting the minimality of D.

In case $c < c_{\alpha}$, equation (2) gives

$$0 = (c_{\alpha} - c)\alpha + \beta + \sum_{\gamma \in \Delta, \gamma \neq \alpha} c_{\gamma}\gamma,$$

which is a non-negative linear combination of D. But all these roots are positive and the coefficient for β has a positive coefficient (at least 1), so the right hand side cannot equal to 0 (by definition of total ordering).

We've shown that $-s_{\alpha}(\beta) \notin \Pi$. Since $s_{\alpha}(\beta) \notin \Pi$ as shown in [Hum90, Section 1.3], we have $\alpha(\beta) \notin \Phi$, which is a contradiction.

References

- [Der14] Aram Dermenjian. Crystallographic Root Systems, 2014. https://egunawan.github.io/coxeter/text/dermenjian_ survey_crystallographic_root_systems.pdf.
- [Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.