MATH3094 WEEK 15 TH HANDWRITTEN HW

REPLACE WITH YOUR NAME

List of positive definite graphs. Take 5 minutes to copy by hand the just first two columns of Table I (page 296-297 of Bjorner Brenti): the finite irreducible Coxeter systems. The first two columns are just the names A_n , B_n , D_n , E_6 , E_7 , E_8 , F_4 , G_2 , H_3 , H_4 , $I_2(m)$ and their Coxeter graphs.

This table is also available on https://en.wikipedia.org/wiki/ Coxeter-Dynkin_diagram

(A multiple of) Cartan matrices. See page 31 of Humphreys Sec 2.3: For each Coxeter graph Γ with vertex set S, we can define a symmetric $n \times n$ matrix $A = (a_{i,j})$ by setting

$$a(s,s') := -\cos\frac{\pi}{m(s,s')}.$$

For example, the matrix for $I_2(6)$ is $\begin{pmatrix} 1 & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & 1 \end{pmatrix}$ and its determinant is 1 - 3/4 = 1/4 > 0.

The principal minor of A are the determinants of the submatrices of A obtained by removing the last k rows and columns $(0 \le k < n)$. For

- example, the principal minors of the above matrix are 1 and ¹/₄.
 (1) For each of the Coxeter graphs A₂, A₃, B₂, B₃, G₂, write down the matrix A.
 - (2) Compute all the principal minors of the matrices A for A_3 and B_3 . Each matrix has three principal minors coming from the determinants of the 1×1 , 2×2 submatrices and the determinant of A. Make sure all the principal minors are positive. You can use WolframAlpha or another tool to do or to check your determinant computation.