MATH3094 WEEK 12 HW (HANDWRITTEN IS OK)

REPLACE WITH YOUR NAME

Credit:
fill in

- Emily

Exercise 1. Reference: [Humphreys, Sections 1.6] and Week 11 class notes. Choose a simple system $\Delta=\{\alpha, \beta\}$ with $\alpha=(1,0)$ and $\beta=$ $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Its corresponding positive system is $\Pi=\{\alpha, \beta, \alpha+\beta\}$.

The following are the inversion sets for all elements of the reflection group.
(1) $N(i d)=\emptyset$
(2) $N\left(\sigma_{\alpha}\right)=\{\alpha\}$
(3) $N\left(\sigma_{\beta}\right)=\{\beta\}$
(4) $N\left(\sigma_{\alpha} \sigma_{\beta}\right)=\{\beta, \alpha+\beta\}$
(5) $N\left(\sigma_{\beta} \sigma_{\alpha}\right)=\{\alpha, \alpha+\beta\}$ (computed during class)
(6) $N\left(\sigma_{\alpha} \sigma_{\beta} \sigma_{\alpha}\right)=\Pi$

Confirm the items labeled (2) and (6) using a combination of (a) the reflection formula (first page on Humphreys) and taking the usual dot product, (b) the permutation matrices, and (c) drawing the twodimensional sketch.

Exercise 2. Reference: [Humphreys, Sections 1.6], Week 11 class notes, and Section 1.5 (page 20) of [Bjorner and Brenti].
(1) All 24 permutations of S_{4} are listed in Figure 3.2 page 67 of [BB]. Pick two permutations π in S_{4} (not computed in class) which are not adjacent transpositions $(k, k+1)$, for example, you can pick [3421] and [4213] (window notations). For each π, please write down which row it is on. The bottom row (with the identity permutation) is row number 0 .
(2) Compute $\ell(\pi)$ for each π (of the two you pick above).
(3) Write all shortest product of simple reflections for each π.
(4) Find $I N V(\pi)$. Then verify that $\operatorname{inv}(\pi)=\ell(\pi)$.

Misc. Approximately how much time did you spend on this homework?

