MATH3094 WEEK 10 HW (HANDWRITTEN IS OK)

REPLACE WITH YOUR NAME

Credit: Write down everyone who helped you, including classmates who contributed to your thought process (either through sharing insights or
— Emily through being a sounding board). Write down the textbook and other written sources you used as well.

Instruction.

remove this instruction section when you are done.

You can complete this homework by hand or $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. Either submit a physical copy (in class) or upload a PDF (if handwritten) or invite me to your Overleaf project.

Note: You are encouraged to post on Piazza or come to office hour.
Exercises. Reference: Humphreys Sections $1.2+2.9$, and Section 1.3.
(1) (Sec 1.2 and 2.9) If Φ is a root system (that is, satisfies (R1) and (R2)), then Φ^{V} is also a root system.
How to do this problem: this was done in class during Week 9 (with a few blanks to fill in with computation) when discussing Section 1.2 and Section 2.9.
(2) (Sec 1.2 and 2.9) Show that the action of W on the root lattice $L(\Phi)$ is stable, that is, if $v \in L(\Phi)$ then $\sigma_{\alpha}(v) \in L(\Phi)$ for all $\alpha \in \Phi$.
How to do this problem: this was done in class (when discussing Section 1.2 and Section 2.9).
(3) (Optional - will be on future Problem Set) (Sec 1.2 and 2.9) Show that if Φ is a crystallograhic root system then the action of W on the weight lattice $\hat{L}(\Phi)$ is stable, that is, if $v \in \hat{L}(\Phi)$ then $\sigma_{\alpha}(v) \in \hat{L}(\Phi)$ for all $\alpha \in \Phi$.
(4) (Sec 1.3) Let Π be a positive system of a root system Φ. Suppose D is a minimal subset subject to the requirement that each root in Π is a nonnegative linear combination of D. Prove that

$$
\langle\alpha, \beta\rangle \leq 0 \text { for all pairs } \alpha \neq \beta \in D .
$$

How to do this problem: This inequality statement is labeled (1) on [?, page 8]. The inequality is proven on [?, page 9]. Please read the proof many times until you understand it and
then rewrite the same proof here with more details. You can also read [?, page 34].
(5) Approximately how much time did you spend on this homework?

References

