MATH 3094 WEEK 7 HW (HANDWRITTEN WORK IS OK)

REPLACE WITH YOUR NAME

Credit: Write down everyone who helped you, including classmates who contributed to your thought process (either through sharing insights or through being a sounding board). Write down Judson's textbook and other written sources you used as well. Required — Emily

Emily

remove this instruct	ion section w	when you a	re done.
----------------------	---------------	------------	----------

Instruction.

You can complete this homework by hand or IAT_EX . Either submit a physical copy (in class) or upload a PDF (if handwritten) or your Overleaf link on HuskyCT.

Note: You are encouraged to post on Piazza or come to office hour.

Exercises. From Judson Sec 11.3 Exercises http://abstract.ups. edu/aata/exercises-homomorph.html, please complete ...

- i.) (Required) Find at least one classmate (a different person from two weeks ago), and share and discuss at least a couple homework exercises with them for at least a few minutes. Write down their name/s and briefly summarize your interaction with them (one to four complete sentences).
- ii.) Exercise 1. Prove that det(AB) = det(A) det(B) for $A, B \in GL_2(\mathbb{R})$.

(Note: This shows that the determinant is a group homomorphism from $GL_2(\mathbb{R})$ (with matrix multiplication as the group operation) to \mathbb{R}^* , the nonzero real numbers, with multiplication as the group operation.)

- iii.) Exercise 2. Consider the four maps ϕ between groups defined on Exercise 2 parts (a), (b), (c), (e).
 - For each map, determine whether it is a homomorphism or not a homomorphism.
 - For each map which is a homomorphism, what is the kernel?
 - For each map which is not a homomorphism, explain why (give an example).

Date: deadline: Week 7 Tuesday, Oct 9, 2018, 3:30pm.

REPLACE WITH YOUR NAME

- iv.) Exercise 4. Let $\phi : (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ be the map given by $\phi(n) = 7n$ for $n \in \mathbb{Z}$. Find the kernel and the image of ϕ .
- v.) (Not from Judson) Prove or disprove the following: if G is a cyclic group and H is a subgroup of G, then H is also a cyclic group. Hint: You can study and paraphrase Section 2 of Conrad's subgroups of cyclic groups notes http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cyclicgp.pdf. Warning: many examples shown are for groups with multiplication as the group operation, unlike our problems.
- vi.) (Only submit if you weren't in class on this day) We proved Exercise 18 in class. Practice proving this for an exam.
- vii.) Exercise 19 part i. Given a homomorphism $\phi : G \to H$ define a relation \sim on G by $a \sim b$ if $\phi(a) = \phi(b)$ for $a, b \in G$. Show that this relation is an equivalence relation.

Optional: describe the equivalence classes.

viii.) (Not from Judson) Let

 $S_n^B := \{ \text{bijections } w : [\pm n] \to [\pm n] \text{ where } w(-a) = -w(a) \}.$

Prove that this set S_n^B is closed under composition (using just the definition of the set).

Optional I: show also that $S_n^D := \{w \in S_n^B : neg(w(1), \dots, w(n)) \equiv 0 \pmod{2}\}$ is closed under composition.

Optional II: Show also that the set of affine permutations is closed under composition.

- ix.) Do at least two of the following.
 - Check that σ_{α} is an orthogonal transformation. Use the bilinearity of <,>.
 - Check that σ_{α} sends α to $-\alpha$.
 - Check that, if $-\beta \in H_{\alpha}$, then σ_{α} sends β to itself.
 - Check that σ_{α}^2 is the identity map.
- x.) Do Exercise 1 (Chapter 1) from Bjorner Brenti textbook, pg 22.
- xi.) Approximately how much time did you spend on this homework?

 $\mathbf{2}$