Math3094 Final Exam

replace with your name

Instruction

remove this instruction section when you are done.

- Deadline for sharing Overleaf file: Friday, December 14 (noon).

Note 1: If you wish to continue making changes to your Overleaf file (until Sunday, December 16 at noon), you may let me know, and I will wait to download your submission until then.

Note 2: You may share with me your Overleaf file prior to Friday if you have questions about what you've done so far.

- You may and should use Hum90, BB05, class notes (including a copy of a classmate's class notes in case you missed some classes), previous homework and problem sets.
- You may use all theorems stated in class (except for problems where you are asked to prove something 'from scratch').
- You may use Sage and other technology to verify your permutation multiplication. Note that the order of composition of Sage (left to right) is opposite our convention (right to left).
- During this take-home exam, you may not consult other resources (other textbooks, the internet, etc). You are not to discuss the exam with individuals other than the instructor until after the deadline.
- Two problems (pages) will be dropped, so please complete at least four out of six problems (pages). I will read your entire submission.
- Note that the last item on each of problems 2-5 is the most challenging. Even if you do not complete this last item, you should still complete the earlier (computational) items for partial credit.

1. Let W be a finite reflection group and fix a simple system Δ. Given $x \in W$, define the length $\ell(x)$ of x as in Hum90, Sec 1.6, pg 12] (also stated in [BB05, Sec 1.4, pg 15]).
Define

$$
\begin{aligned}
& d: W \times W \rightarrow[0, \infty) \text { by } \\
& d(x, y):=\ell\left(x y^{-1}\right)
\end{aligned}
$$

Show that d is a metric on W, that is, show that, for all $x, y, z \in W$, we have
a. $\ell\left(x y^{-1}\right) \geq 0$
b. $\ell\left(x y^{-1}\right)=0$ if and only if $\mathrm{x}=\mathrm{y}$
c. $\ell\left(x y^{-1}\right)=\ell\left(y x^{-1}\right)$
d. $\ell\left(x z^{-1}\right) \leq \ell\left(x y^{-1}\right)+\ell\left(y z^{-1}\right)$ (triangle inequality)

Proof. Click here for a hint:
2. Consider the symmetric group S_{n}. For $i=1,2, \ldots, n-1$, set

$$
s_{i}:=(i, i+1)=\left(\begin{array}{ccccccc}
1 & 2 & \ldots & i & i+1 & \ldots & n \\
1 & 2 & \ldots & i+1 & i & \ldots & n
\end{array}\right) .
$$

Given $x=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ x(1) & x(2) & \ldots & x(n)\end{array}\right) \in S_{n}$, define

$$
\begin{aligned}
\operatorname{INV}(x) & :=\{\text { pair }(i, j): i<j, x(i)>x(j)\} \text { and let } \\
\operatorname{inv}(x) & :=\operatorname{card} \operatorname{INV}(x)
\end{aligned}
$$

a. Choose a specific example of a permutation $x \in S_{5}$ where $\operatorname{inv}(x)>0$. Write x in either window or 2-line notation. Compute $x s_{2}$ and write it in either window or 2 -line notation. Write down $\operatorname{INV}(x)$ and $\operatorname{INV}\left(x s_{2}\right)$ and compare these two sets.
b. Consider an arbitrary permutation $x=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ x(1) & x(2) & \ldots & x(n)\end{array}\right) \in S_{n}$. Write $x s_{i}$ in window notation or 2-line notation.
c. Prove the following from scratch (don't use other theorems).
I. If $x(i)<x(i+1)$, then $\operatorname{inv}\left(x s_{i}\right)=\operatorname{inv}(x)+1$.
II. If $x(i)>x(i+1)$, then $\operatorname{inv}\left(x s_{i}\right)=\operatorname{inv}(x)-1$.
3. Consider the symmetric group $W=S_{n}$. As in Hum90, Sec 2.10, pg 41], fix the simple system $\Delta=\left\{\alpha_{1}=\epsilon_{1}-\epsilon_{2}, \alpha_{2}=\epsilon_{2}-\epsilon_{3}, \ldots, \alpha_{n-1}=\epsilon_{n-1}-\epsilon_{n}\right\}$ which corresponds to the set of simple transpositions $S=\left\{s_{1}=(1,2), s_{2}=(2,3), \ldots, s_{n-1}=(n-1, n)\right\}$.
Given $x \in S_{n}$, define the length $\ell(x)$ of x as in Hum90, Sec 1.6, pg 12] (or BB05, Sec $1.4, \operatorname{pg} 15])$.
Show that $\ell(x)=\operatorname{inv}(x)$ for all $x \in S_{n}$, where $\operatorname{inv}(x)$ is defined in Problem 2 .
Proof. Hint 1: You may cite Problem 2 even if you omit it.
Click here for Hint 2:
4. Keep the same setup as in Problem 3. The positive system corresponding to Δ is $\Pi:=\left\{\epsilon_{i}-\epsilon_{j}: 1 \leq i<j \leq n\right\}$ which corresponds to the set of transpositions $\{(i, j) \in$ $\left.S_{n}: 1 \leq i<j \leq n\right\}$. Note that card $\Pi=n(n-1) / 2$.
Let w_{0} denote the unique element which sends Π to $-\Pi$, see Hum90, Sec 1.8, pg 1516]. Since $\ell\left(w_{0}\right)=$ card \{positive roots sent to negative roots by $\left.w_{0}\right\}$ (due to Hum90, Corollary 1.7, pg 14]), we have $\ell\left(w_{0}\right)=\operatorname{card} \Pi=n(n-1) / 2$.
By Problem 3, we have $\operatorname{inv}\left(w_{0}\right)=\ell\left(w_{0}\right)=n(n-1) / 2$. Since card $\{(i, j): 1 \leq i<$ $j \leq n\}=n(n-1) / 2$, we must have $\operatorname{INV}\left(w_{0}\right)=\{$ pair $(i, j): 1 \leq i<j \leq n\}$. So $w_{0}(1)>w_{0}(2)>\cdots>w_{0}(n)$, and hence

$$
w_{0}:=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
n & n-1 & \ldots & 2 & 1
\end{array}\right) .
$$

a. (Optional) If you haven't already done so in this exam, prove the following.

If $x(i)<x(i+1)$, then $(i, i+1) \notin \operatorname{INV}(x)$ and $(i, i+1) \in \operatorname{INV}\left(x s_{i}\right)$.
If $x(i)>x(i+1)$, then $(i, i+1) \in \operatorname{INV}(x)$ and $(i, i+1) \notin \operatorname{INV}\left(x s_{i}\right)$.
Proof.
b. Write down $w_{0} x s_{i}$ in either window or 2-line notation. Click here for hints:
c. Prove the following.
I. If $x(i)<x(i+1)$, then $(i, i+1) \in \operatorname{INV}\left(w_{0} x\right) \quad$ and $\quad(i, i+1) \notin \operatorname{INV}\left(w_{0} x s_{i}\right)$.
II. If $x(i)>x(i+1)$, then $(i, i+1) \notin \operatorname{INV}\left(w_{0} x\right) \quad$ and $\quad(i, i+1) \in \operatorname{INV}\left(w_{0} x s_{i}\right)$.

Proof. Click here for a hint:
5. Keep the same setup as Problem 4. Let

$$
\begin{aligned}
\operatorname{INV}^{C}(x): & =\{(i, j): 1 \leq i<j \leq n,(i, j) \notin \operatorname{INV}(x)\} \\
& =\{(i, j): 1 \leq i<j \leq n\} \backslash \operatorname{INV}(x)
\end{aligned}
$$

denote the 'complement' of $\operatorname{INV}(x)$. Note that card $\operatorname{INV}^{C}(x)=\ell\left(w_{0}\right)-\operatorname{inv}(x)=n(n-$ 1) $/ 2-\operatorname{inv}(x)$.
a. In window notation, let $x:=[2143]$ (length 2) and $y:=[3412]$ (length 4) in S_{4}. Compute $\operatorname{INV}(x), \operatorname{INV}^{C}(x)$ and $\operatorname{INV}(y)$, and verify that $\operatorname{INV}^{C}(x)=\operatorname{INV}(y)$. (Note that $2+4=6=4(3) / 2=n(n-1) / 2=\ell\left(w_{0}\right)$. Use Figure 1 to guess a pattern.)
b. Let $x:=[4123]$ (length 3). Compute $\operatorname{INV}(x)$ and $\operatorname{INV}^{C}(x)$. Find $y \in S_{n}$ (length 3) and such that $\operatorname{INV}^{C}(x)=\operatorname{INV}(y)$. (Use Figure 1 to guess a pattern.)
c. Let $x:=[3241]$ (length 4). Compute $\operatorname{INV}(x)$ and $\operatorname{INV}^{C}(x)$. Find $y \in S_{n}$ (length 2) and such that $\operatorname{INV}^{C}(x)=\operatorname{INV}(y)$. (Use Figure 1 to guess a pattern.)
d. Show that if $x \in S_{n}$ then there exists $y \in S_{n}$ such that $\operatorname{INV}^{C}(x)=\operatorname{INV}(y)$.

Note: the set equality implies that, if $\ell(x)=r$ then $\ell(y)=\ell\left(w_{0}\right)-r$.
Click here for hints:
6. Recall that the Coxeter group of type H_{3} can be generated by elements $\{a, b, c\}$ with relations $(a b)^{5}=(b c)^{3}=(a c)^{2}=a^{2}=b^{2}=c^{2}=1$. See Figure 2 ,
a. Label all the edges of the weak order of H_{3}, where u and v are connected by an edge labeled s if and only if $u=v s$ (if and only if $v=u s$). In Figure 2, I have started to label some edges.
My suggestion would be to draw all the edges by hand then scan/photograph it. Add your finished figure into your Overleaf document. If you have trouble adding a figure, please send me your figure and I will add it to your Overleaf document.
Note: This is not meant to take a lot of time. Let me know if you don't understand my examples and aren't sure how to write the labels quickly.
b. Use your labeled figure to:
i.) write a reduced expression of the longest element w_{0} of H_{3}, which is of length 15 and located at the top of the graph.
ii.) find a reduced expression that is a power of 5 , that is, write $w_{0}=w^{5}$ for some reduced expression of an element w of length 3 .
c. Consider the three elements labeled x, y, and z appearing in Figure 2, Exactly one of them is the product of the other two. Determine the corret identity (among the six possible identities, i.e. $x y=z, y x=z, x z=y$, etc.).

References

[BB05] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005.
[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

Figure 1: Weak order of S_{4} from [BB05, Fig. 3.2, pg 67]

Figure 3.3. Weak order of H_{3}.
Figure 2: Weak order of H_{3} from [BB05, Fig. 3.3, pg 68]

