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(b) Find the complement of L(K5).
(c) Suppose G has n vertices, labeled v1, . . . vn, and the degree of vertex

vi is ri. Let m denote the size of G, so r1 + r2 + · · ·+ rn = 2m. Find
formulas for the order and size of L(G) in terms of n, m, and the ri.

8. Prove that if graphs G and H are isomorphic, then their complements G
and H are also isomorphic.

9. Prove that the two graphs in Figure 1.24 are not isomorphic.

FIGURE 1.24.

10. Two of the graphs in Figure 1.25 are isomorphic.

� � �

FIGURE 1.25.

(a) For the pair that is isomorphic, give an appropriate one-to-one corre-
spondence.

(b) Prove that the remaining graph is not isomporhic to the other two.

1.2 Distance in Graphs
‘Tis distance lends enchantment to the view . . .

— Thomas Campbell, The Pleasures of Hope

How far is it from one vertex to another? In this section we de�ne distance in
graphs, and we consider several properties, interpretations, and applications. Dis-
tance functions, called metrics, are used in many different areas of mathematics,
and they have three de�ning properties. If M is a metric, then
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18 1. Graph Theory

i. M(x, y) � 0 for all x, y, and M(x, y) = 0 if and only if x = y;

ii. M(x, y) = M(y, x) for all x, y;

iii. M(x, y) � M(x, z) + M(z, y) for all x, y, z.

As you encounter the distance concept in the graph sense, verify for yourself that
the function is in fact a metric.

1.2.1 De�nitions and a Few Properties
I prefer the term ‘eccentric.’

— Brenda Bates, Urban Legend

Distance in graphs is de�ned in a natural way: in a connected graph G, the dis-
tance from vertex u to vertex v is the length (number of edges) of a shortest u–v
path in G. We denote this distance by d(u, v), and in situations where clarity of
context is important, we may write dG(u, v). In Figure 1.26, d(b, k) = 4 and
d(c, m) = 6.

�

��

���

��

�

�

�

� �

�

FIGURE 1.26.

For a given vertex v of a connected graph, the eccentricity of v, denoted ecc(v),
is de�ned to be the greatest distance from v to any other vertex. That is,

ecc(v) = max
x�V (G)

{d(v, x)} .

In Figure 1.26, ecc(a) = 5 since the farthest vertices from a (namely k, m, n) are
at a distance of 5 from a.

Of the vertices in this graph, vertices c, k, m and n have the greatest eccentricity
(6), and vertices e, f and g have the smallest eccentricity (3). These values and
types of vertices are given special names. In a connected graph G, the radius of G,
denoted rad(G), is the value of the smallest eccentricity. Similarly, the diameter
of G, denoted diam(G), is the value of the greatest eccentricity. The center of the
graph G is the set of vertices, v, such that ecc(v) = rad(G). The periphery of G
is the set of vertices, u, such that ecc(u) = diam(G). In Figure 1.26, the radius
is 3, the diameter is 6, and the center and periphery of the graph are, respectively,
{e, f, g} and {c, k, m, n}.

I't's

__
riff



1.2 Distance in Graphs 19

Surely these terms sound familiar to you. On a disk, the farthest one can travel
from one point to another is the disk’s diameter. Points on the rim of a disk are on
the periphery. The distance from the center of the disk to any other point on the
disk is at most the radius. The terms for graphs have similar meanings.

Do not be misled by this similarity, however. You may have noticed that the
diameter of our graph G is twice the radius of G. While this does seem to be a
natural relationship, such is not the case for all graphs. Take a quick look at a
cycle or a complete graph. For either of these graphs, the radius and diameter are
equal!

The following theorem describes the proper relationship between the radii and
diameters of graphs. While not as natural, tight, or “circle-like” as you might
hope, this relationship does have the advantage of being correct.

Theorem 1.4. For any connected graph G, rad(G) � diam(G) � 2 rad(G).

Proof. By de�nition, rad(G) � diam(G), so we just need to prove the second
inequality. Let u and v be vertices in G such that d(u, v) = diam(G). Further, let
c be a vertex in the center of G. Then,

diam(G) = d(u, v) � d(u, c) + d(c, v) � 2 ecc(c) = 2 rad(G).

The de�nitions in this section can also be extended to graphs that are not con-
nected. In the context of a single connected component of a disconnected graph,
these terms have their normal meanings. If two vertices are in different compo-
nents, however, we say that the distance between them is in�nity.

We conclude this section with two interesting results. Choose your favorite
graph. It can be large or small, dense with edges or sparse. Choose anything you
like, as long as it is your favorite. Now, wouldn’t it be neat if there existed a graph
in which your favorite graph was the “center” of attention? The next theorem
(credited to Hedetneimi in [44]) makes your wish come true.

Theorem 1.5. Every graph is (isomorphic to) the center of some graph.

Proof. Let G be a graph (your favorite!). We now construct a new graph H (see
Figure 1.27) by adding four vertices (w, x, y, z) to G, along with the following
edges:

{wx, yz} � {xa | a � V (G)} � {yb | b � V (G)}.

Now, ecc(w) = ecc(z) = 4, ecc(y) = ecc(x) = 3, and for any vertex v � V (G),

� ��� 	

FIGURE 1.27. G is the center.

ecc(v) = 2. Therefore, G is the center of H .

SKIP



20 1. Graph Theory

Suppose you don’t like being the center of attention. Maybe you would rather
your favorite graph avoid the spotlight and stay on the periphery. The next theorem
(due to Bielak and Sys�o, [25]) tells us when that can happen.

Theorem 1.6. A graph G is (isomorphic to) the periphery of some graph if and
only if either every vertex has eccentricity 1, or no vertex has eccentricity 1.

Proof. Suppose that every vertex of G has eccentricity 1. Not only does this mean
that G is complete, it also means that every vertex of G is in the periphery. G is
the periphery of itself!

On the other hand, suppose that no vertex of G has eccentricity 1. This means
that for every vertex u of G, there is some vertex v of G such that uv �� E(G).
Now, let H be a new graph, constructed by adding a single vertex, w, to G, to-
gether with the edges {wx | x � V (G)}. In the graph H , the eccentricity of w is
1 (w is adjacent to everything). Further, for any vertex x � V (G), the eccentricity
of x in H is 2 (no vertex of G is adjacent to everything else in G, and everything
in G is adjacent to w). Thus, the periphery of H is precisely the vertices of G.

For the reverse direction, let us suppose that G has some vertices of eccentricity
1 and some vertices of eccentricity greater than 1. Suppose also (in anticipation
of a contradiction) that G forms the periphery of some graph, say H . Since the
eccentricities of the vertices in G are not all the same, it must be that V (G) is
a proper subset of V (H). This means that H is not the periphery of itself and
that diam(H) � 2. Now, let v be a vertex of G whose eccentricity in G is 1 (v
is therefore adjacent to all vertices of G). Since v � V (G) and since G is the
periphery of H , there exists a vertex w in H such that d(v, w) = diam(H) � 2.
The vertex w, then, is also a peripheral vertex (see Exercise 4) and therefore must
be in G. This contradicts the fact that v is adjacent to everything in G.

Exercises
1. Find the radius, diameter and center of the graph shown in Figure 1.28.

FIGURE 1.28.

2. Find the radius and diameter of each of the following graphs: P2k, P2k+1,
C2k, C2k+1, Kn, Km,n.

3. For each graph in Exercise 2, �nd the number of vertices in the center.

4. If x is in the periphery of G and d(x, y) = ecc(x), then prove that y is in
the periphery of G.

SKIP
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5. If u and v are adjacent vertices in a graph, prove that their eccentricities
differ by at most one.

6. A graph G is called self-centered if C(G) = V (G). Prove that every com-
plete bipartite graph, every cycle, and every complete graph is self-centered.

7. Given a connected graph G and a positive integer k, the kth power of G,
denoted Gk, is the graph with V (Gk) = V (G) and where vertices u and v
are adjacent in Gk if and only if dG(u, v) � k.

(a) Draw the 2nd and 3rd powers of P8 and C10.
(b) For a graph G of order n, what is Gdiam(G)?

8. (a) Find a graph of order 7 that has radius 3 and diameter 6.
(b) Find a graph of order 7 that has radius 3 and diameter 5.
(c) Find a graph of order 7 that has radius 3 and diameter 4.
(d) Suppose r and d are positive integers and r � d � 2r. Describe a

graph that has radius r and diameter d.

9. Suppose that u and v are vertices in a graph G, ecc(u) = m, ecc(v) = n,
and m < n. Prove that d(u, v) � n � m. Then draw a graph G1 where
d(u, v) = n � m, and another graph G2 where d(u, v) > n � m. In each
case, label the vertices u and v, and give the values of m and n.

10. Let G be a connected graph with at least one cycle. Prove that G has at least
one cycle whose length is less than or equal to 2 diam(G) + 1.

11. (a) Prove that if G is connected and diam(G) � 3, then G is connected.
(b) Prove that if diam(G) � 3, then diam(G) � 3.
(c) Prove that if G is regular and diam(G) = 3, then diam(G) = 2.

1.2.2 Graphs and Matrices
Unfortunately no one can be told what the Matrix is. You have to see
it for yourself.

— Morpheus, The Matrix

What do matrices have to do with graphs? This is a natural question — nothing
we have seen so far has suggested any possible relationship between these two
types of mathematical objects. That is about to change!

As we have seen, a graph is a very visual object. To this point, we have deter-
mined distances by looking at the diagram, pointing with our �ngers, and count-
ing edges. This sort of analysis works fairly well for small graphs, but it quickly
breaks down as the graphs of interest get larger. Analysis of large graphs often
requires computer assistance.
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Computers cannot just look and point at graphs like we can. Instead, they under-
stand graphs via matrix representations. One such representation is an adjacency
matrix. Let G be a graph with vertices v1, v2, . . . , vn. The adjacency matrix of G
is the n × n matrix A whose (i, j) entry, denoted by [A]i,j , is de�ned by

[A]i,j =
�

1 if vi and vj are adjacent,
0 otherwise.

The graph in Figure 1.29 has six vertices. Its adjacency matrix, A, is

A =

�

�������

0 0 0 1 1 0
0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 1
1 0 0 1 0 1
0 0 1 1 1 0

�

�������
.
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FIGURE 1.29.

Note that for simple graphs (where there are no loops) adjacency matrices have
all zeros on the main diagonal. You can also see from the de�nition that these
matrices are symmetric.1

A single graph can have multiple adjacency matrices — different orderings of
the vertices will produce different matrices. If you think that these matrices ought
to be related in some way, then you are correct! In fact, if A and B are two differ-
ent adjacency matrices of the same graph G, then there must exist a permutation
of the vertices such that when the permuation is applied to the corresponding rows
and columns of A, you get B.

This fact can be used in reverse to determine if two graphs are isomorphic,
and the permutation mentioned here serves as an appropriate bijection: Given two
graphs G1 and G2 with respective adjacency matrices A1 and A2, if one can apply

1Can you think of a context in which adjacency matrices might not be symmetric? Direct your
attention to Figure 1.3 for a hint.
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Let’s see if we can relate these matrices back to earlier distance concepts. Given
a graph G of order n with adjacency matrix A, and given a positive integer k,
de�ne the matrix sum Sk to be

Sk = I + A + A2 + · · · + Ak,

where I is the n × n identity matrix. Since the entries of I and A are ones and
zeros, the entries of Sk (for any k) are nonnegative integers. This implies that for
every pair i, j, we have [Sk]i,j � [Sk+1]i,j .

Theorem 1.9. Let G be a connected graph with vertices labeled v1, v2, . . . , vn,
and let A be its corresponding adjacency matrix.

1. If k is the smallest positive integer such that row j of Sk contains no zeros,
then ecc(vj) = k.

2. If r is the smallest positive integer such that all entries of at least one row
of Sr are positive, then rad(G) = r.

3. If m is the smallest positive integer such that all entries of Sm are positive,
then diam(G) = m.

Proof. We will prove the �rst part of the theorem. The proofs of the other parts
are left for you as exercises.2

Suppose that k is the smallest positive integer such that row j of Sk contains
no zeros. The fact that there are no zeros on row j of Sk implies that the distance
from vj to any other vertex is at most k. If k = 1, the result follows immediately.
For k > 1, the fact that there is at least one zero on row j of Sk�1 indicates that
there is at least one vertex whose distance from vj is greater than k � 1. This
implies that ecc(vj) = k.

We can use adjacency matrices to create other types of graph-related matrices.
The steps given below describe the construction of a new matrix, using the matrix
sums Sk de�ned earlier. Carefully read through the process, and (before you read
the paragraph that follows!) see if you can recognize the matrix that is produced.

Creating a New Matrix, M

Given: A connected graph of order n, with adjacency matrix A, and with Sk as
de�ned earlier.

1. For each i � {1, 2, . . . , n}, let [M ]i,i = 0.

2. For each pair i, j where i �= j, let [M ]i,j = k where k is the least positive
integer such that [Sk]i,j �= 0.

2You’re welcome.
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Can you see what the entries of M will be? For each pair i, j, the (i, j) entry
of M is the distance from vi to vj . That is,

[M ]i,j = d(vi, vj).

The matrix M is called the distance matrix of the graph G.

Exercises
1. Give the adjacency matrix for each of the following graphs.

(a) P2k and P2k+1, where the vertices are labeled from one end of the
path to the other.

(b) C2k and C2k+1, where the vertices are labeled consecutively around
the cycle.

(c) Km,n, where the vertices in the �rst partite set are labeled v1, . . . , vm.
(d) Kn, where the vertices are labeled any way you please.

2. Without computing the matrix directly, �nd A3 where A is the adjacency
matrix of K4.

3. If A is the adjacency matrix for the graph G, show that the (j, j) entry of
A2 is the degree of vj .

4. Let A be the adjacency matrix for the graph G.

(a) Show that the number of triangles that contain vj is 1
2 [A3]j,j .

(b) The trace of a square matrix M , denoted Tr(M), is the sum of the
entries on the main diagonal. Prove that the number of triangles in G
is 1

6 Tr(A3).

5. Find the (1, 5) entry of A2009 where A is the adjacency matrix of C10 and
where the vertices of C10 are labeled consecutively around the cycle.

6. (a) Prove the second statement in Theorem 1.9.
(b) Prove the third statement in Theorem 1.9.

7. Use Theorem 1.9 to design an algorithm for determining the center of a
graph G.

8. The graph G has adjacency matrix A and distance matrix D. Prove that if
A = D, then G is complete.

9. Give the distance matrices for the graphs in Exercise 1. You should create
these matrices directly — it is not necessary to use the method described in
the section.

Sec l 2.2 Graphsand Matrices
and thedistance matrix
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1.2.3 Graph Models and Distance
Do I know you?

— Kevin Bacon, in Flatliners

We have already seen that graphs can serve as models for all sorts of situations.
In this section we will discuss several models in which the idea of distance is
signi�cant.

The Acquaintance Graph
“Wow, what a small world!” This familiar expression often follows the discovery
of a shared acquaintance between two people. Such discoveries are enjoyable,
for sure, but perhaps the frequency with which they occur ought to keep us from
being as surprised as we typically are when we experience them.

We can get a better feel for this phenomenon by using a graph as a model.
De�ne the Acquaintance Graph, A, to be the graph where each vertex represents
a person, and an edge connects two vertices if the corresponding people know
each other. The context here is �exible — one could create this graph for the
people living in a certain neighborhood, or the people working in a certain of�ce
building, or the people populating a country or the planet. Since the smaller graphs
are all subgraphs of the graphs for larger populations, most people think of A in
the largest sense: The vertices represent the Earth’s human population.3

An interesting question is whether or not the graph A, in the large (Earth) sense,
is connected. Might there be a person or a group of people with no connection
(direct or indirect) at all to another group of people?4 While there is a possibility
of this being the case, it is most certainly true that if A is in fact disconnected,
there is one very large connected component.

The graph A can be illuminating with regard to the “six degrees of separation”
phenomenon. Made popular (at least in part) by a 1967 experiment by social psy-
chologist Stanley Milgram [204] and a 1990 play by John Guare [142], the “six
degrees theory” asserts that given any pair of people, there is a chain of no more
than six acquaintance connections joining them. Translating into graph theorese,
the assertion is that diam(A) � 6. It is, of course, dif�cult (if not impossible) to
con�rm this. For one, A is enormous, and the kind of computation required for
con�rmation is nontrivial (to say the least!) for matrices with six billion rows. Fur-
ther, the matrix A is not static — vertices and edges appear all of the time.5 Still,
the graph model gives us a good way to visualize this intriguing phenomenon.

Milgram’s experiment [204] was an interesting one. He randomly selected sev-
eral hundred people from certain communities in the United States and sent a

3The graph could be made even larger by allowing the vertices to represent all people, living or
dead. We will stick with the living people only — six billion vertices is large enough, don’t you think?

4Wouldn’t it be interesting to meet such a person? Wait — it wouldn’t be interesting for long
because as soon as you meet him, he is no longer disconnected!

5Vertices will disappear if you limit A to living people. Edges disappear when amnesia strikes.

Read one of the Acquaintance Hollywood MathCollaborationGraph
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packet to each. Inside each packet was the name and address of a single “target”
person. If the recipient knew this target personally, the recipient was to mail the
packet directly to him. If the recipient did not know the target personally, the re-
cipient was to send the packet to the person he/she thought had the best chance
of knowing the target personally (perhaps someone in the same state as the target,
or something like that). The new recipient was to follow the same rules: Either
send it directly to the target (if known personally) or send it to someone who has
a good chance of knowing the target. Milgram tracked how many steps it took for
the packets to reach the target. Of the packets that eventually returned, the median
number of steps was 5! Wow, what a small world!

The Hollywood Graph
Is the actor Kevin Bacon the center of Hollywood? This question, �rst asked by a
group of college students in 1993, was the beginning of what was soon to become
a national craze: The Kevin Bacon Game. The object of the game is to connect
actors to Bacon through appearances in movies. For example, the actress Emma
Thompson can be linked to Bacon in two steps: Thompson costarred with Gary
Oldman in Harry Potter and the Prisoner of Azkaban (among others), and Oldman
appeared with Bacon in JFK. Since Thompson has not appeared with Bacon in
a movie, two steps is the best we can do. We say that Thompson has a Bacon
number of 2.

Can you sense the underlying graph here?6 Let us de�ne the Hollywood Graph,
H , as follows: The vertices of H represent actors, and an edge exists between two
vertices when the corresponding actors have appeared in a movie together. So, in
H , Oldman is adjacent to both Bacon and Thompson, but Bacon and Thompson
are not adjacent. Thompson has a Bacon number of 2 because the distance from
her vertex to Bacon’s is 2. In general, an actor’s Bacon number is de�ned to be
the distance from that actor’s vertex to Bacon’s vertex in H . If an actor cannot be
linked to Bacon at all, then that actor’s Bacon number is in�nity. As was the case
with the Acquaintance Graph, if H is disconnected we can focus our attention on
the single connected component that makes up most of H (Bacon’s component).

The ease with which Kevin Bacon can be connected to other actors might lead
one to conjecture that Bacon is the unique center of Hollywood. In terms of graph
theory, that conjecture would be that the center of H consists only of Bacon’s ver-
tex. Is this true? Is Bacon’s vertex even in the center at all? Like the Acquaintance
Graph, the nature of H changes frequently, and answers to questions like these
are elusive. The best we can do is to look at a snapshot of the graph and answer
the questions based on that particular point in time.

Let’s take a look at the graph as it appeared on December 25, 2007. On that
day, the Internet Movie Database [165] had records for nearly 1.3 million actors.
Patrick Reynolds maintains a website [234] that tracks Bacon numbers, among
other things. According to Reynolds, of the 1.3 million actors in the database on

6or, “Can you smell the Bacon?”
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that day, 917,007 could be linked to Bacon in some way via chains of shared
movie appearances. The maximum distance from Bacon to any of the actors in
his component was 8 (and so Bacon’s eccentricity is 8). What about eccentricities
of other actors? Are there any that are less than 8? According to Reynolds, the
answer is no — 8 is the smallest eccentricity, and so Kevin Bacon is in the center
of H . But it is very crowded there — thousands and thousands of other actors
have eccentricity 8 as well.

The Mathematical Collaboration Graph
The Hungarian Paul Erd�os (1913–1996) was one of the greatest and most pro-
li�c mathematicians of the twentieth century. Erd�os authored or coauthored over
1500 mathematical papers covering topics in graph theory, combinatorics, set the-
ory, geometry, number theory, and more. He collaborated with hundreds of other
mathematicians, and this collaboration forms the basis of a Bacon-like ranking
system. While not as widely popular as Bacon numbers, almost all mathemati-
cians are familiar with the concept of Erd�os numbers.

Erd�os himself is assigned Erd�os number 0. Any mathematician who coauthored
a paper with Erd�os has Erd�os number 1. If a person has coauthored a paper with
someone who has an Erd�os number of 1 (and if that person himself/herself doesn’t
have Erd�os number 1), then that person has an Erd�os number of 2. Higher Erd�os
numbers are assigned in a similar manner.

The underlying graph here should be clear. De�ne the Mathematical Collabo-
ration Graph, C, to have vertices corresponding to researchers, and let an edge
join two researchers if the two have coauthored a paper together. A researcher’s
Erd�os number, then, is the distance from the corresponding vertex to the vertex
of Erd�os. If a researcher is not in the same connected component of C as Erd�os,
then that researcher has an in�nite Erd�os number.

As you might imagine, new vertices and edges are frequently added to C. Jerry
Grossman maintains a website [140] that keeps track of Erd�os numbers. At one
point in 2007, there were over 500 researchers with Erd�os number 1 and over
8100 with Erd�os number 2. You might surmise that because Erd�os died in 1996,
the number of people with Erd�os number 1 has stopped increasing. While this is
surely to be true sometime in the near future, it hasn’t happened yet. A number of
papers coauthored by Erd�os have been published since his death. Erd�os has not
been communicating with collaborators from the great beyond (at least as far as
we know) — it is simply the case that his collaborators continue to publish joint
research that began years ago.

Small World Networks
As we saw earlier, the Acquaintance Graph provides a way to model the famous
“small world phemomenon” — the sense that humans are connected via numerous
recognized and unrecognized connections. The immense size and dynamic nature
of that graph make it dif�cult to analyze carefully and completely, and so smaller
models can prove to be more useful. In order for the more manageable graphs to
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be helpful, though, it is important that they enjoy some fundamental small world
properties.

So what makes a small world small? What properties should a graph have if
it is to be a model of a small world? Let’s list a few. As you read through the
list below, think about your own acquaintance network and see if these properties
make sense to you.

1. There should be plenty of mutual acquaintances (shared neighbors). If this
were the only property, then complete graphs would surely �t the bill —
lots of mutual neighbors there. A complete graph, though, is not a realistic
model of acquaintances in the world.

2. The graph should be sparse in edges. In a realistic model, there should be
relatively few edges compared to the number of vertices in the graph.

3. Distances between pairs of vertices should be relatively small. The char-
acteristic path length of a graph G, denoted LG, is the average distance
between vertices, where the average is taken over all pairs of distinct ver-
tices. In any graph of order n, there are |E(Kn)| distinct pairs of vertices,
and in Exercise 1 of Section 1.1.3, you showed that |E(Kn)| = n(n�1)/2.
So for a graph G of order n,

LG =

�
u,v�V (G) d(u, v)

|E(Kn)| =
2

n(n � 1)

	

u,v�V (G)

d(u, v).

One way of obtaining this value for a graph is to �nd the mean of the non-
diagonal entries in the distance matrix of the graph.

4. There should be a reasonable amount of clustering in a small world graph.
In actual acquaintance networks, there are a number of factors (geography,
for instance) that create little clusters of vertices — small groups of vertices
among which a larger than typical portion of edges exists. For example,
there are likely to be many edges among the vertices that represent the
people that live in your neighborhood.
Given a vertex v in a graph of order n, we de�ne its clustering coef�cient,
denoted cc(v), as follows (recall that �N [v]	 is the subgraph induced by the
closed neighborhood of v).

cc(v) =
|E (�N [v]	)|

E
�
K1+deg(v)

�

 =
2 |E (�N [v]	)|

(1 + deg(v)) deg(v)
.

For each vertex v, this is the percentage of edges that exist among the ver-
tices in the closed neighborhood of v. For a graph G of order n, we de�ne
the clustering coef�cient of the graph G, denoted by CC(G) to be the aver-
age of the clustering coef�cients of the vertices of G. That is,

CC(G) =
1
n

	

v�V (G)

cc(v).
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Small world networks have the property that characteristic path lengths are low
and clustering coef�cients are high. Graphs that have these properties can be used
as models in the mathematical analyses of the small world phenomenon and its
associated concepts. It is interesting to note that other well known networks have
exhibited small world traits — the internet, electric power grids, and even neural
networks are examples — and this increases even further the applicability of graph
models.

Exercises
1. Compute the characteristic path length for each of each of the following

graphs: P2k, P2k+1, C2k , C2k+1, Kn, Km,n.

2. Compute the clustering coef�cient for each of each of the following graphs:
P2k, P2k+1, C2k, C2k+1, Kn, Km,n.

3. (a) In the Acquaintance Graph, try to �nd a path from your vertex to the
vertex of the President of the United States.

(b) Your path from the previous question may not be your shortest such
path. Prove that your actual distance from the President is at most
one away from the shortest such distance to be found among your
classmates.

Interesting Note: There are several contexts in which Bacon numbers can be cal-
culuated. While Bacon purists only use movie connections, others include shared
appearances on television and in documentaries as well. Under these more open
guidelines, the mathematician Paul Erd�os actually has a Bacon number of 3! Erd�os
was the focus of the 1993 documentary N is a Number [63]. British actor Alec
Guinness made a (very) brief appearance near the beginning of that �lm, and
Guinness has a Bacon number of 2 (can you �nd the connections?). As far as
we know, Bacon has not coauthored a research article with anyone who is con-
nected to Erd�os, and so while Erd�os’ Bacon number is 3, Bacon’s Erd�os number
is in�nity.

1.3 Trees
“O look at the trees!” they cried, “O look at the trees!”

— Robert Bridges, London Snow

In this section we will look at the trees—but not the ones that sway in the wind
or catch the falling snow. We will talk about graph-theoretic trees. Before moving
on, glance ahead at Figure 1.30, and try to pick out which graphs are trees.


