10 1. Graph Theory

6. Prove that every closed odd walk in a graph contains an odd cycle.

7. Draw a connected graph having at most 10 vertices that has at least one
cycle of each length from 5 through 9, but has no cycles of any other length.

8. Let P, and P; be two paths of maximum length in a connected graph G.
Prove that P; and P, have a common vertex.

9. Let G be a graph of order n that is not connected. What is the maximum
size of G?

10. Let G be a graph of order n and size strictly less than n — 1. Prove that G
is not connected.

11. Prove that an edge e is a bridge of G if and only if e lies on no cycle of G.
12. Prove or disprove each of the following statements.

(a) If G has no bridges, then GG has exactly one cycle.
(b) If G has no cut vertices, then GG has no bridges.

(c) If G has no bridges, then GG has no cut vertices.

13. Prove or disprove: If every vertex of a connected graph G lies on at least
one cycle, then GG is 2-connected.

14. Prove that every 2-connected graph contains at least one cycle.

15. Prove that for every graph G,

(a) £(G) < 3(G); ’['@at book :
(b) if §(G) > n — 2, then x(G) = 6(G) Cgmbmﬂﬁorlﬁs a(nop

16. Let G be a graph of order n. GVQT\’\ —[— l’\ﬁo‘ﬁa 1)

(a) If0(G) > ”T_l then prove that G is connected.
(b) If §(G) > ”7_2 then show that G need not be connected. Iotj H [ H ) M

SQ/C/ 1.1.3 Special Types of Graphs

until we meet again . ..
— from An Irish Blessing

In this section we describe several types of graphs. We will run into many of them
later in the chapter.
1. Complete Graphs

We introduced complete graphs in the previous section. A complete graph
of order n is denoted by K,,, and there are several examples in Figure 1.11.
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FIGURE 1.11. Examples of complete graphs.

2. Empty Graphs

The empty graph on n vertices, denoted by F,,, is the graph of order n
where E is the empty set (Figure 1.12).

Eq

[
FIGURE 1.12. An empty graph.

3. Complements

Given a graph G, the complement of G, denoted by G, is the graph whose
vertex set is the same as that of G, and whose edge set consists of all the
edges that are not present in G (Figure 1.13).

G G

FIGURE 1.13. A graph and its complement.

4. Regular Graphs

A graph G is regular if every vertex has the same degree. (G is said to be
regular of degree r (or r-regular) if deg(v) = r for all vertices v.in.G.
Complete graphs of order n are regular of degree n — 1, and empty graphs
are regular of degree 0. Two further examples are shown in Figure 1.14.
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FIGURE 1.14. Examples of regular graphs.

[ 5. Cycles
The graph C), is simply a cycle on n vertices (Figure 1.15).

FIGURE 1.15. The graph C7.

6. Paths
The graph P, is simply a path on n vertices (Figure 1.16).

FIGURE 1.16. The graph Ps.

7. Subgraphs

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C
E(G). In this case we write H C G, and we say that G contains H. In
a graph where the vertices and edges are unlabeled, we say that H C G
if the vertices could be labeled in such a way that V(H) C V(G) and
E(H) C E(G). In Figure 1.17, H; and Hy are both subgraphs of G, but
Hsj is not.

8. Induced Subgraphs

Given a graph G and a subset .S of the vertex set, the subgraph of G induced
by S, denoted (S), is the subgraph with vertex set S and with edge set
{wv | u,v € S and wv € E(G)}. So, (S) contains all vertices of S and
all edges of G whose end vertices are both in S. A graph and two of its
induced subgraphs are shown in Figure 1.18.
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FIGURE 1.17. H; and H> are subgraphs of .
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FIGURE 1.18. A graph and two of its induced subgraphs.

9. Bipartite Graphs

A graph G is bipartite if its vertex set can be partitioned into two sets X
and Y in such a way that every edge of G has one end vertex in X and the

graphs in Figure 1.19 are bipartite. Since it is not possible to partition the
vertices of the third graph into two such sets, the third graph is not bipartite.

X Y
N~ O~
FIGURE 1.19. &% Tariﬁ te N\ Ws

A bipartite graph with partite sets X and Y is called a complete bipartite
graph if its edge set is of the form £ = {zy | x € X,y € Y} (thatis, if
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every possible connection of a vertex of X with a vertex of Y is present in
the graph). Such a graph is denoted by K| x| |y|- See Figure 1.20.

K2,3 K 1,4 K4,4

FIGURE 1.20. A few complete bipartite graphs.

The next theorem gives an interesting characterization of bipartite graphs.

Theorem 1.3. A graph with at least two vertices is bipartite if and only if it
contains no odd cycles.

Proof. Let G be a bipartite graph with partite sets X and Y. Let C be a cycle
of G and say that C'is vy, va, ..., Uk, v1. Assume without loss of generality that
v1 € X. The nature of bipartite graphs implies then that v; € X for all odd ¢, and
v; € Y for all even . Since vy, is adjacent to vy, it must be that k is even; and
hence C'is an even cycle.

For the reverse direction of the theorem, let GG be a graph of order at least two
such that GG contains no odd cycles. Without loss of generality, we can assume
that GG is connected, for if not, we could treat each of its connected components
separately. Let v be a vertex of GG, and define the set X to be

X = {z € V(G) | the shortest path from z to v has even length},

andletY = V(G) \ X.

Now let x and x’ be vertices of X, and suppose that  and x’ are adjacent. If
x = v, then the shortest path from v to x’ has length one. But this implies that
x' € Y, a contradiction. So, it must be that x # v, and by a similar argument,
x' # v. Let Py be a path from v to x of shortest length (a shortest v—x path) and
let P, be a shortest v—x’ path. Say that Py is v = vg, v1, ..., vox = = and that P
isv = wg, wy,..., wy = 2'. The paths P; and P; certainly have v in common.
Let v’ be a vertex on both paths such that the v'—x path, call it P/, and the v'—x’
path, call it Pj, have only the vertex v/ in common. Essentially, v’ is the “last”
vertex common to P, and P». It must be that P; and P} are shortest v'—x and
v'—x’ paths, respectively, and it must be that v’ = v; = w; for some 4. But since
x and z’ are adjacent, v;, v;11,. .., Uk, Wot, Wot_1, - .., w; is a cycle of length
(2k — i) + (2t — i) + 1, which is odd, and that is a contradiction.

Thus, no two vertices in X are adjacent to each other, and a similar argument
shows that no two vertices in Y are adjacent to each other. Therefore, GG is bipartite
with partite sets X and Y. L]
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We conclude this section with a discussion of what it means for two graphs
to be the same. Look closely at the graphs in Figure 1.21 and convince yourself
that one could be re-drawn to look just like the other. Even though these graphs

C 8

7 4 €07

g h 6 5

FIGURE 1.21. Are these graphs the same?

have different vertex sets and are drawn differently, it is still quite natural to think
of these graphs as being the same. The idea of isomorphism formalizes this phe-
nomenon.

Graphs G and H are said to be isomorphic to one another (or simply, isomor-
phic) if there exists a one-to-one correspondence f : V(G) — V(H) such that
for each pair x,y of vertices of G, xy € F(G) if and only if f(x)f(y) € E(H).
In other words, G and H are isomorphic if there exists a mapping from one vertex

atksl

bk

set to another that preserves adjacencies. The mapping itself is called an isomor-

phism. In our example, such an isomorphism could be described as follows:

{(a,1),(b,2),(c,8),(d,3), (e, 7), (f,4),(9,6), (h,5)} .

When two graphs G and H are isomorphic, it is not uncommon to simply say that

G = H or that “G is H.” As you will see, we will make use of this convention

quite often in the sections that follow. )
Several facts about isomorphic graphs are immediate. First, if G' and H are
isomorphic, then |V (G)| = |V(H)| and |E(G)| = |E(H)|. The converse of this

statement is not true, though, and you can see that in the graphs of Figure 1.22.
The vertex and edge counts are the same, but the two graphs are clearly not iso-

xe

FIGURE 1.22.
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morphic.
A second necessary fact is that if G and H are isomorphic then the degree
sequences must be identical. Again, the graphs in Figure 1.22 show that the con-

verse of this statement is not true. A third fact, and one that you will prove in
Exercise 8, is that if graphs G and H are isomorphic, then their complements G
and H must also be isomorphic.

In general, determining whether two graphs are isomorphic is a difficult prob-
lem. While the question is simple for small graphs and for pairs where the ver-
tex counts, edge counts, or degree sequences differ, the general problem is often
tricky to solve. A common strategy, and one you might find helpful in Exercises 9
and 10, is to compare subgraphs, complements, or the degrees of adjacent pairs
of vertices.

. +he let
Exercises praph on

n ver-hus
@For n > 1, prove that K, has n(n — 1)/2 edges.
Olf Ky, r, is regular prove that r; = ro.

all vex% rces have fhe same Aﬂﬂ

. Determine whether K is a subgraph of K4 4. If yes, then exhibit it. If no,
then explain why not.

4. Determine whether Py is an induced subgraph of K4 4. If yes, then exhibit
it. If no, then explain why not.

5. List all of the unlabeled connected subgraphs of C'sy4.

6. The concept of complete bipartite graphs can be generalized to define the
complete multipartite graph K, ,, . r.. This graph consists of k sets of
vertices Ay, Ao, ..., Ay, with |A;| = r; for each i, where all possible
“interset edges” are present and no “intraset edges” are present. Find ex-

pressions for the order and size of K, r, .. r,.

7. The line graph L(G) of a graph G is defined in the following way: the
vertices of L(G) are the edges of G, V(L(G)) = E(G), and two vertices
in L(G) are adjacent if and only if the corresponding edges in G share a
vertex.

(a) Let G be the graph shown in Figure 1.23. Find L(G).

FIGURE 1.23.
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(b) Find the complement of L(K5).

(c) Suppose G has n vertices, labeled vy, ...v,, and the degree of vertex
v; is r;. Let m denote the size of G, sory +r9+-- -+ 17, = 2m. Find
formulas for the order and size of L(G) in terms of n, m, and the r;.

8. Prove that if graphs G and H are isomorphic, then their complements G
and H are also isomorphic.

@ Prove that the two graphs in Figure 1.24 are not isomorphic. (. heck Hhe
1 2 o(e,ﬁ*r ee

- 1
ge_obue,nc& (P ¢)
z k K of each
>< 9eeph
3 2

FIGURE 124, lhere is a cycle

len Hh 4 or
l}’\o‘)ex of lemqth 2

10. Two of the graphs in Figure 1.25 are isomorphic. ¢, 0 i< 2 regulav (S“ b 1D

H Veriices is 10.
S, Hhe cum of degrees
e |O. > = 20,
’E7 “Fhe Fiest Thw f
P 0 R

Grqr\,\ chory)
:H; g,o!_ats s _Eg—_: ‘g_

EVQV;’ C—yde, is of

Length ai FIGURE 1.25. =
Q"\OY‘"’Q Sf L&hs“l"/\ U'F
cy cles - — Chovtest cyo(gt'—

(a) For the pair that is isomorphic, give an appropriate one-to-one corre-
spondence.

(b) Prove that the remaining graph is not isomporhic to the other two.

1.2 Distance in Graphs

‘Tis distance lends enchantment to the view . ..
— Thomas Campbell, The Pleasures of Hope

How far is it from one vertex to another? In this section we define distance in
graphs, and we consider several properties, interpretations, and applications. Dis-
tance functions, called metrics, are used in many different areas of mathematics,
and they have three defining properties. If M is a metric, then



