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“Begin at the beginning,” the King said, gravely, “and go on till you
come to the end; then stop.”
— Lewis Carroll, Alice in Wonderland

The Pregolya River passes through a city once known as Konigsberg. In the 1700s
seven bridges were situated across this river in a manner similar to what you see
in Figure 1.1. The city’s residents enjoyed strolling on these bridges, but, as hard
as they tried, no resident of the city was ever able to walk a route that crossed each
of these bridges exactly once. The Swiss mathematician Leonhard Euler learned
of this frustrating phenomenon, and in 1736 he wrote an article [98] about it.
His work on the “Konigsberg Bridge Problem” is considered by many to be the
beginning of the field of graph theory.

FIGURE 1.1. The bridges in Konigsberg.
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2 1. Graph Theory

At first, the usefulness of Euler’s ideas and of “graph theory” itself was found
only in solving puzzles and in analyzing games and other recreations. In the mid
1800s, however, people began to realize that graphs could be used to model many
things that were of interest in society. For instance, the “Four Color Map Conjec-

ture,” introduced by DeMorgan in 1852, was a famous problem that was seem-
ingly unrelated to graph theory. The conjecture stated that four is the maximum
number of colors required to color any map where bordering regions are colored
differently. This conjecture can easily be phrased in terms of graph theory, and
many researchers used this approach during the dozen decades that the problem
remained unsolved.

The field of graph theory began to blossom in the twentieth century as more
and more modeling possibilities were recognized — and the growth continues. It
is interesting to note that as specific applications have increased in number and in
scope, the theory itself has developed beautifully as well.

In Chapter 1 we investigate some of the major concepts and applications of
graph theory. Keep your eyes open for the Konigsberg Bridge Problem and the
Four Color Problem, for we will encounter them along the way.

1.1 Introductory Concepts

A definition is the enclosing a wilderness of idea within a wall of
words.
— Samuel Butler, Higgledy-Piggledy

1.1.1 Graphs and Their Relatives

A graph consists of two finite sets,(}/and'E: Each element of V' is called a vertex
(plural vertices). The elements of F, called edges, are unordered pairs of vertices.
For instance, the set V' might be {@, b, c,d, e, f, g, h}, and E might be {{a, d},
{a.e}, {b,c}, {b,e}. {b.g}. {e. f1. {d. f}. {d. g}, {g. h}}. Together, V and E
are a graph G.

Graphs have natural visual representations. Look at the diagram in Figure 1.2.
Notice that each element of V' is represented by a small circle and that each ele-
ment of F is represented by a line drawn between the corresponding two elements
of V.
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FIGURE 1.2. A visual representation of the graph G.
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As a matter of fact, we can just as easily define a graph to be a diagram consist-
ing of small circles, called vertices, and curves, called edges, where each curve
connects two of the circles together. When we speak of a graph in this chapter, we
will almost always refer to such a diagram.

We can obtain similar structures by altering our definition in various ways. Here
are some examples.

1. By replacing our set £ with a set of ordered pairs of vertices, we obtain

a directed graph, or digraph (Figure 1.3). Each edge of a digraph has a
specific orientation.
b
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FIGURE 1.3. A digraph.

2. If we allow repeated elements in our set of edges, technically replacing our
set E/ with a multiset, we obtain a multigraph (Figure 1.4).
N
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FIGURE 1.4. A multigraph.

3. By allowing edges to connect a vertex to itself (“loops™), we obtain a pseu-
dograph (Figure 1.5).

FIGURE 1.5. A pseudograph.
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4. Allowing our edges to be arbitrary subsets of vertices (rather than just pairs)
gives us hypergraphs (Figure 1.6).

FIGURE 1.6. A hypergraph with 7 vertices and 5 edges.

5. By allowing V' or E to be an infinite set, we obtain infinite graphs. Infinite
graphs are studied in Chapter 3.

In this chapter we will focus on finite, simple graphs: those without loops or
multiple edges.

[ — 2

Exercises
Cix / \
1. %en people are seated around a circular table. Each person shakes hands / 3

with everyone at the table except the person sitting directly across the table. \ /
Draw a graph that models this situation. 5—4

2. Six fraternity brothers (Adam, Bert, Chuck, Doug, Ernie, and Filthy Frank)
need to pair off as roommates for the upcoming school year. Each person
has compiled a list of the people with whom he would be willing to share a
room.

Adam’s list: Doug A E— 1
Bert’s list: Adam, Ernie /;

Chuck’s list: Doug, Ernie

Doug’s list: Chuck T / C
Ernie’s list: Ernie

Frank’s list: Adam, Bert 2 b

Draw a digraph that models this situation.

3. There are twelve women’s basketball teams in the Atlantic Coast Confer-
ence: Boston College (B), Clemson (C), Duke (D), Florida State (F), Geor-
gia Tech (G), Miami (I), NC State (S), Univ. of Maryland (M), Univ. of
North Carolina (N), Univ. of Virginia (V), Virginia Tech (T), and Wake
Forest Univ. (W). At a certain point in midseason,

B has played I, T*, W
C has played D*, G
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D has played C*, S, W
F has played N*, V

G has played C, M

I has played B,M, T

S has played D, V*

M has played G, I, N
N has played F*, M, W
V has played F, S*

T has played B*, I

W has played B, D, N
The asterisk(*) indicates that these teams have played each other twice.

Draw a multigraph that models this situation.

4. Can you explain why no resident of Konigsberg was ever able to walk a
route that crossed each bridge exactly once? (We will encounter this ques-
tion again in Section 1.4.1.)

1.1.2 The Basics

Your first discipline is your vocabulary,
— Robert Frost

In this section we will introduce a number of basic graph theory terms and
concepts. Study them carefully and pay special attention to the examples that are
provided. Our work together in the sections that follow will be enriched by a solid
understanding of these ideas.

The Very Basics

The vertex set of a graph G is denoted by V(G), and the edge set is denoted
by E(G). We may refer to these sets simply as V' and FE if the context makes the
particular graph clear. For notational convenience, instead of representing an edge
as {u, v}, we denote this simply by wv. The order of a graph G is the cardinality
of its vertex set, and the size of a graph is the cardinality of its edge set.

Given two vertices u and v, if uv € E, then v and v are said to be adjacent. In
this case, u and v are said to be the end vertices of the edge uv. If uv € F, then u
and v are nonadjacent. Furthermore, if an edge e has a vertex v as an end vertex,
we say that v is incident with e.

The neighborhood (or open neighborhood) of a vertex v, denoted by N (v), is
the set of vertices adjacent to v:

N(v)={x €V |vz € E}.
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FIGURE 1.2. A visual representation of the graph G.
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The closed neighborhood of a vertex v, denoted by N{[v], is simply the set {v} U
N (v). Given a set S of vertices, we define the neighborhood of S, denoted by
N(S), to be the union of the neighborhoods of the vertices in S. Similarly, the
closed neighborhood of S, denoted N[S], is defined to be S U N(.5).

The degree of v, denoted by deg(v), is the number of edges incident with v. In
simple graphs, this is the same as the cardinality of the (open) neighborhood of v.
The maximum degree of a graph G, denoted by A(G), is defined to be

A(G) = max{deg(v) | v € V(G)}.
Similarly, the minimum degree of a graph G, denoted by §(G), is defined to be

§(G) = min{deg(v) | v € V(G)}.

Thel|degree sequencelof a graph of order n is the n-term sequence (usually written
in descending order) of the vertex degrees.

Let’s use the graph G in Figure 1.2 to illustrate some of these concepts: G
has order 8 and size 9; vertices a and e are adjacent while vertices a and b are
nonadjacent; N (d) = {a, f, g}, N[d] = {a,d, f,g9}; A(G) = 3, 6(G) = 1; and
the degree sequence is 3, 3, 3, 2, 2, 2, 2, 1.

The following theorem is often referred to as the First Theorem of Graph Theory.




Theorem l.l.@n a graph G, the sum of the degrees of the vertices is equal to
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Perambulation and Connectivity

A walk in a graph is a sequence of (not necessarily distinct) vertices v1, vo, ..., Uk
such that v;v;.1 € E fort = 1,2,...,k — 1. Such a walk is sometimes called
a v1—vg walk, and v, and vy, are the end vertices of the walk. If the vertices in a
walk are distinct, then the walk is called a path. If the edges in a walk are distinct,
then the walk is called a trail. In this way, every path is a trail, but not every trail
is a path. Got it?

A closed path, or cycle, is a path vy, ..., v (Where £ > 3) together with the
edge viv;. Similarly, a trail that begins and ends at the same vertex is called a
closed trail, or circuit. The length of a walk (or path, or trail, or cycle, or circuit)
is its number of edges, counting repetitions.

Once again, let’s illustrate these definitions with an example. In the graph of
Figure 1.7, a, ¢, f, ¢, b, d is a walk of length 5. The sequence b, a, ¢, b, d represents
a trail of length 4, and the sequence d, g, b, a, c, f, e represents a path of length 6.
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Also, g, d, b, ¢, a, b, g is a circuit, while e, d, b, a, ¢, f, e is a cycle. In general, it
is possible for a walk, trail, or path to have length 0, but the least possible length CLf @ s"wvorl& G\ =\§\n\>
of a circuit or cycle is 3. o &Tn?\c; Ve X ke <

The following theorem is often referred to as the Second Theorem in this book.
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Theorem 1.2. In a graph G with vertices u\and v, every u—v'walk contains a u—v
ath( i.e walk with disttnet vertices),
path{(ie o L

Proof. Let W be a u—v walk in G. We prove this theorem by induction on the
length of W. If W is of length 1 or 2, then it is easy to see that W/ must be a path.

P~
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For the induction hypothesis, suppose the result is true for all walks of length less W,
than k, and suppose W has length k. Say that IV is

U = wo, W1,W2, ..., W1, W =V w

where the vertices are not necessarily distinct. If the vertices are in fact distinct, o 2_ 1 ~.3
then W itself is the desired u—v path. If not, then let j be the smallest integer such =5
that w; = w, for some r > j. Let W7 be the walk

U =W, ..., W5, Wp415...,WE = V.

This walk has length strictly less than k, and therefore the induction hypothesis
implies that W contains a u—v path. This means that W contains a u—v path, and
the proof is complete. O



We now introduce two different operations on graphs: vertex deletion and edge
deletion. Given a graph G and a vertex v € V(G), we let G — v denote the graph
obtained by removing v and all edges incident with v from G. If S is a set of
vertices, we let G — S denote the graph obtained by removing each vertex of S
and all associated incident edges. If e is an edge of G, then G — e is the graph
obtained by removing only the edge e (its end vertices stay). If 7" is a set of edges,
then G — T is the graph obtained by deleting each edge of 1" from G'. Figure 1.8
gives examples of these operations.

ver tex deletion | edge deletion
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FIGURE 1.8. Deletion operations.

A graph is connected if every pair of vertices can be joined by a path. Infor-
mally, if one can pick up an entire graph by grabbing just one vertex, then the
graph is connected. In Figure 1.9, (G; is connected, and both G2 and G5 are not
connected (or disconnected). Each maximal connected piece of a graph is called
a connected component. In Figure 1.9, G; has one component, G5 has three com-
ponents, and G5 has two components.

2o SN
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CompP nent  FIGURE 1.9. Connected and disconnected graphs
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If the deletion of a vertex v from G causes the number of components to in-
crease, then v is called a cut vertex. In the graph G of Figure 1.8, vertex d is a cut
vertex and vertex c is not. Similarly, an edge e in G is said to be a bridge if the
graph GG — e has more components than G In Figure 1.8, the edge ab is the only
bridge.

A proper subset S of vertices of a graph G is called a vertex cut set (or simply,
a cut set) if the graph G — S is disconnected. A graph is said to be complete if
every vertex is adjacent to every other vertex. Consequently, if a graph contains at
least one nonadjacent pair of vertices, then that graph is not complete. Complete
graphs do not have any cut sets, since G — S'is connected for all proper subsets .S
of the vertex set. Every non-complete graph has a cut set, though, and this leads
us to another definition. For a graph GG which is not complete, the connectivity
of G, denoted (), is the minimum size of a cut set of G. If G is a connected,
non-complete graph of order n, then 1 < x(G) < n — 2. If G is disconnected,
then k(G) = 0. If G is complete of order n, then we say that x(G) = n — 1.
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Further, for a positive integer k, we say that a graph is k-connected if k < k(G).
You will note here that “I1-connected” simply means “connected.”

Here are several facts that follow from these definitions. You will get to prove
a couple of them in the exercises.

i. A graph is connected if and only if x(G) > 1.
ii. k(G) > 2if and only if G is connected and has no cut vertices.

iii. Every 2-connected graph contains at least one cycle.
E _j" ?”p Y mc .g ’f‘\@ a
iv. For every graph G, k(G) < §(G). ’ nEeer
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@ If GG is a graph of order n, what is the maximum number of edges in G?

Prove that for any graph G of order at least 2, the degree sequence has at
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@ Consider the graph shown in Figure 1.10.
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FIGURE 1.10.

a
(a) How many different paths have c as an end vertex? b
(b) How many different paths avoid vertex c altogether? ( Consider G — )
(c) What is the maximum length of a circuit in this graph? Give an exam- |

: : closed rail
ple of such a circuit. et ed qes

(d) What is the maximum length of a circuit that does not include vertex
c? Give an example of such a circuit.

4. Is it true that a finite graph having exactly two vertices of odd degree must
contain a path from one to the other? Give a proof or a counterexample.

5. Let G be a graph where §(G) > k.

(a) Prove that G has a path of length at least k.
(b) If £ > 2, prove that GG has a cycle of length at least k£ + 1.
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10.

11.
12.

13.

14.
15.

16.
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Prove that every closed odd walk in a graph contains an odd cycle.

Draw a connected graph having at most 10 vertices that has at least one
cycle of each length from 5 through 9, but has no cycles of any other length.

Let P; and P» be two paths of maximum length in a connected graph G.
Prove that P, and P» have a common vertex.

Let GG be a graph of order n that is not connected. What is the maximum
size of G?

Let GG be a graph of order n and size strictly less than n — 1. Prove that G
is not connected.

Prove that an edge e is a bridge of GG if and only if e lies on no cycle of G.
Prove or disprove each of the following statements.

(a) If G has no bridges, then G has exactly one cycle.
(b) If G has no cut vertices, then GG has no bridges.
(c) If G has no bridges, then GG has no cut vertices.

Prove or disprove: If every vertex of a connected graph G lies on at least
one cycle, then GG is 2-connected.

Prove that every 2-connected graph contains at least one cycle.
Prove that for every graph G,

(@) K(G) < 6(G);

(b) if 0(G) > n — 2, then k(G) = 0(G).
Let GG be a graph of order n.

(a) If0(G) > ”T_l then prove that G is connected.
(b) If §(G) > ”7_2 then show that (G need not be connected.

1.1.3 Special Types of Graphs

until we meet again . ..
— from An Irish Blessing

In this section we describe several types of graphs. We will run into many of them
later in the chapter.

1.

Complete Graphs

We introduced complete graphs in the previous section. A complete graph
of order n is denoted by K,,, and there are several examples in Figure 1.11.



