Sec 16.3 Part B

Then 16.33 (Weisner's Hum)
Let L be a lattice with minimum elt
$$\hat{O}$$
 and
maximum elt \hat{T} .
Then, for $a \in L - \{\hat{I}\}$ ("ang elt that's not the maximum),
 $M([\hat{O},\hat{I}]) = -\sum_{\substack{X \in X \\ X \neq O}} M([\hat{X},\hat{I}])$
 $X:_{XAa=\hat{O}}$
Rem instead of computing $M([\hat{O},X])$ for all $X \leq \hat{I}$,
we only need to compute $M([\hat{O},X])$ whose meet w/a is \hat{O} .
"If we choose a to be a large elt, the # of these
elts will be small"
E.g. the Krewergs poset.
 $M([\hat{U},\hat{I}]) = -\sum_{\substack{X \neq O}} M([\hat{U},X]) = -\sum_{\substack{X \neq O}} M([\hat{U},X])$

Recall the poset
$$\Pi_n$$
 of (set) partitions of $[n]$.
(Example
16.34) $1 = \{1,2,...,n\}$
[$13\{1,3,...,n\}$ [$13\{1,3,...,n-1\}$
Then 16.33 works best if we choose $a \in P$ which is covered by $\hat{1}$.
Choose $a := \{n\}\{1,2,...,n-1\}$.
Then $\times Aa = \hat{0}$ iff n and $x = \{k,n\}\{1k\} - \{k,ln-1\}$ included
Nite: There are $n-1$ possibilities for some $k \in [n-1]$.
If x is such an elt, then $[x_1,1]$ isomorphic to Π_{n-1}
To see this, think of $[x_1,\hat{1}]$ as the
set of partitions of $\{k,n\}, (k,2,...,k,.....,n-1\}$
which is an $n-1$ -elt set.
By Then 16.33,
 $M_{\Pi_n}([\hat{0},1]) = -\sum_{\substack{x : XAa = \hat{0}\\ x \neq \hat{0}}} \mu([x_1,1]) = -(n-1) M_{\Pi_{n-1}}([\hat{0},1])$
 $x : XAa = \hat{0}$
 $X = kare bare because $M_{\Pi_2}([\hat{0},n]) = 1$$

Note the #s are 2,5,14.
Fun fact: # NCn is the n-th Catalan #.
Lemma The one-block elt {1,2,3,...,n} is the maximum elt of NCn.
Lemma NCn is a meet-semi lattice,
with
$$\alpha \Lambda \beta$$
 being the set partition such that
the elts i and j are in the same block in $\alpha \Lambda \beta$ iff
i and j are in the same block in both α and β ,
i.e. i and j are connected in $\alpha \Lambda \beta$ iff
i and j are connected in $both \alpha$ and β .
Ex
 $\alpha = \int_{12}^{2} \int_{12}^{2}$

$$\alpha \wedge \beta = 1234$$
 and $\alpha \wedge C = p q$
meet 1234

<u>Proof</u> Let X, B ENCn. Let c be the partition of [n] set i and j are in the same block in c iff i and j are connected in both X and B. HW Prove that c is non-crossing.