Sec 16.3 Part B

Thy 16.33 (Weisner's tho)
Let L be a lattice with minimum elf $\hat{0}$ and maximum eft $\hat{1}$.
Then, for $a \in L-\{\hat{i}\}$ ("anyelt that's not the maximum),

$$
\mu([\hat{0}, \hat{\imath}])=-\sum_{\substack{x \\ x \\ x \wedge a=0 \\ x \neq 0}} \mu([x, \hat{\imath}])
$$

I.e.

$$
0=\sum_{x: x \wedge a=\hat{o}} M([x, \hat{\imath}]) .
$$

Rem instead of computing $\mu([\hat{0}, x])$ for all $x \leq \hat{\imath}$, we only need to compute $\mu([\hat{0}, x])$ whose meet $w /$ a is $\hat{0}$.
"If we choose a to be a large celt, the \# of these ells will be small"

Egg. the Kreweras poset.

Prof (ff fine)

Before

New way

(lattice)
Recall the poset Π_{n} of (set) partitions of $[n]$.
(Example

$$
(6,34)
$$

$$
\begin{gathered}
\hat{\imath}=\{1,2, \ldots, n\} \\
\{1\}\{2,3, \ldots, n\}\{2\}\{1,3,4, \ldots, n\} \quad\{n\}\{1,2, \ldots, n-1\}
\end{gathered}
$$

The 16.33 works best if we choose $a \in P$ which is covered by $\hat{\imath}$. Choose $a:=\{n\}\{1,2, \ldots, n-1\}$.
Then $x \wedge a=\hat{0}$ iff n and $x=\{k, n\}\left\{\mathbb{X}_{\hat{k}\}}^{\ldots}\{\hat{k}\}_{\ldots}\{n-1\}\right.$ included
Note: There are $n-1$ possibilities for some $k \in[n-1]$.
If x is such an elf, then $[x, \hat{1}]$ isomorphic to π_{n-1} (set) partitions of $[n-1]$
To see this, think of $[x, \hat{\imath}]$ as the
Set of parfitions of $\{\{k, n\}, 1,2, \ldots, \hat{k}, \ldots, n-1\}$
which is an $n-1$-elf set.
By Thy 16.33,

$$
\mu_{M_{n}}\left([\hat{o}, \hat{\imath})=-\sum^{x} \sum^{x} \times \wedge a=\hat{o}\right.
$$

$\therefore B y$ induction, we have
because $M_{M_{2}}([\hat{0}, \hat{\imath}])=1$

$$
M_{M_{n}}([\hat{0}, \hat{\imath}])=(-1)^{n-1}(n-1)!
$$

Note the \#s are $2,5,14$.
Fun fact: \#N En is the m-th Catalan \#.
Lemma The one-block eft $\{1,2,3, \ldots, n\}$ is the maximum et of $N C_{n}$.
Lemma $N C_{n}$ is a meet-semilattice,
with $\alpha \wedge_{\text {meet }} \beta$ being the set partition such that
the ells i and j are in the same block in $\alpha \Lambda \beta$ iff
i and j are in the same block in both α and β,
i.e, j and j are connected in $\alpha \wedge \beta$ iff
i and j are connected in both α and β,

$$
\alpha \wedge \beta=\overbrace{\text { meet }}^{1} \frac{8}{8} 3 l_{4}^{\rho} \quad \text { and } \quad \alpha \wedge c=\begin{array}{llll}
1 & 8 & \Omega \\
1 & 2 & 3 & 4
\end{array}
$$

$$
\text { Prof Let } \alpha, \beta \in N C_{n}
$$

$$
\text { Let } c \text { be the partition of }[n] \text { s.t }
$$

i and j are in the same block in C iff i and j are (in the same block)

$$
\text { HW Prove that } c \text { is non-crossing. }
$$

