Sec 16.2 Part B Started here week 19 Friday Assume P is a locally finite poset (every interval is finite, e.g. IN, the set of all integer partitions) Recall Def 16.11 Def 16.11 the zeta function $\zeta \in I(P)$ The incidence algebra, the set of all functions f= Int (P) -> R nonempty intervals is defined by $\Xi([x,y]) = 1$ for all nonempty intervals [x,y]delta Recall S is the function where S([x,y])= { 1 if x=y the "identity matrix" Def 16.14 The inverse of the zeta function of P is called the Möbius function Thm 16.15 $\mathcal{O}_{\mathcal{M}}([x_1 \times J) = 1 \quad and \mathcal{O}_{\mathcal{M}}([x_1, y]) = -\sum_{x \leq z < y} \mathcal{M}([x_1, z]) \quad \forall f \quad x < y.$ $\int I_{e} = \sum_{z \in [x,y]} \mu([x_{z}]) \quad \text{for all } x < y.$ Pf (1) Let × < P. $1 = S([\times,\times])$ $=(M \succeq)([x_1 \times])$ by def of M (the incidence alg) $= \sum_{z \in [x_1, x_2]} \mu([x, z]) \leq ([z, x_1]) \text{ by def of multiplication in } I(P)$ (see Sec 16.2 Def 16.10) $= M([x,x]) \succeq ([x,x])$ $= M(E_{X,XJ})$. 1 by def of the zeta function. Det × < Y. by def of the "identity" & function $O = S(E_{X,Y})$ = M Z ([x,x]) by def of M

$$= \sum_{z \in [x,y]} \mu([x,z]) \leq ([z,y]) \quad by \quad def \quad of \quad multiplication \quad in \quad I(P) \\ (see \quad Sec \quad 16.2 \quad Def \quad 16.10) \\ = \sum_{z \in [x,y]} \mu([x,z]) \quad since \quad \leq ([z,y]) = 1 \quad for \quad all \quad z \leq y. \\ z \in [x,y] \quad since \quad \leq ([z,y]) = 1 \quad for \quad all \quad z \leq y. \\ \end{cases}$$

We've shown that the sum of M([x,z]) taken over all z & [x,y] is O.

Cor If
$$x < y$$
, then
 $M([x_1y_1]) = -\sum_{\substack{X < Z \le Y}} M(Z,y)$.
(The same proof but use $ZM = S$ instead of $M \le = S$).
Example 16.17
Using Thm 16.15 to
compute Values of $M([x_1y_1])$
from the bottom up.
 10^{-1} $10^$

Example 16.18 Let P be the poset of all nonnegative integers. If x, ∠y, then $\mu([x,y]) = \begin{cases} -1 & \text{if } x+1 = y \\ 0 & \text{if } x+1 < y \end{cases}$ Pf Let $x \in \mathbb{N}$ Base case: y = x+1 and y = x+2Induction step: Suppose the statement is true all y less than X + K. Prove that the statement holds for X + K. HW Finish the proof. Even it 16.19 P = P = 16 S C T = 11

Example [6.19
$$P = B_n \cdot lf \quad S \leq T$$
, then
 $M([S_{T}]) = (-1)^{|T-S|}$

$$= -M(E_{2},4]) - M(E_{4},4])$$
$$= -(-1) - 1$$
$$= 0$$

Inductive step: Assume the statement is true for all positive integers Smaller than y. Let P1, P2, ..., Pk be distinct prime divisors of y; at least one of them occurs in the prime factorization of y more than once, Call a divisor of y good if it is not divisible by the square of a prime. Call a divisor of y bad if it is divisible by the square of a prime.

Note that
$$[good integers z] = [1, P_1 P_2 \dots P_k]$$

 $P_1 P_2 P_3 P_2 P_3$ So $\sum_{\substack{z \ good}} \mu([1, z]) = \sum_{\substack{z \in [1, P_1 \dots P_k] \\ 1}} M([1, P_1 P_1 \dots P_k])$
 $= 0$ by Thm 16.3
 $\sum_{\substack{z \ bad \\ r \neq y}} M([1, z]) = 0$ because $M([1, z])$ for all bad integers
by the induction hypothesis
Then $M(y) = -\sum_{\substack{z \ f \in Q}} M([1, z])$ by Thm 16.15
 $1 \le z \le y$
 $= -\sum_{\substack{z \ f \in Q}} M([1, z]) - \sum_{\substack{z \ bad \\ z \ bad}} M([1, z])$
 $= 0$, as needed \prod
ended here. Week 15 Monday

Why do we care about the Möbius function?
Why do we care about the Möbius function?
Let
$$[a_i]_{i=0}^{\infty}$$
 be a sequence of real sts.
Define $b_{ni} = \sum_{i=0}^{n} a_i$ for $a \ge 0$.
Note: Given the by, we can compute the a_i
by $a_n = b_n - b_{n-1}$.
Them 16.21 Möbius Inversion Formula
Let $f: P \rightarrow R$ be a function.
Let $g: P \rightarrow R$ be defined by
 $f(g) = \sum_{x \le y} f(x)$.
Then $f(g) = \sum_{x \le y} g(x) M((x, g))$
 $x \le y$.
Then $f(g) = \sum_{x \le y} g(x) M((x, g))$
Let $\xi: [f(x_i), f(x_i) \dots, f(x_n)]$
 $f(g) = \sum_{x \le y} g(x) M((x, g))$
Let $\xi: [f(x_i), f(x_i) \dots, f(x_n)]$
Let $\xi: [f(x_i), f(x_i) \dots, f(x_n)]$
Let Z be the zota matrix of P (the inverse of Z).
Then $f(Z) = [f(a_i), f(a_i), \dots, g(x_n)]$ because $g(y) \ge_{x \le y} f(x)$
 $= \overline{g}$
Then $\overline{f} \ge \overline{g} M$ since $Z_i M = \overline{J}$ by $Aaf of M$
Hence $f(y) = \sum_{x \le y} g(x) M((x, g))$.

Ref: The Early (and Peculiar) History of the Möbrus Fun
An application of M
Problem: For
$$|x| < 1$$
, compute
 $S(x) = \frac{x}{1-x} - \frac{x^2}{1-x^2} - \frac{x^3}{1-x^5} - \frac{x^5}{1-x^5} + \frac{x6}{1-x^6} - \frac{x^7}{1-x^7} + \frac{x10}{1-x10}$
 $-\frac{x^{11}}{1-x^{11}} - \frac{x^{13}}{1-x^{13}} + \frac{x^{14}}{1-x^{14}} + \frac{x^{15}}{1-x^{15}} - \frac{x^{17}}{1-x^{17}} - \dots$
Hoswer
Recall $\mathcal{M}([1, 1]) = 1$
 $\mathcal{M}([1, y]) = \begin{cases} C_{11}k & \text{is } y & \text{is the product of } k & \text{distinct primes} \\ 0 & \text{if } y & \text{is } & \text{divisible by the square of a prime.} \end{cases}$
Write $\mathcal{M}(y) := \mathcal{M}([1, y]) & (\text{for simplicity})$
Note: $\mathcal{M}(1) = 1$, $\mathcal{M}(2) = \mathcal{M}(s) = \mathcal{M}(s) = \dots = \mathcal{M}(17) = (f_1^1 + g_1^1) = (f_1^1 + g_2^1) = (f_1^1) = (f_1^$

Let
$$f(x) = x + x^{2} + x^{3} + x^{4} + ...$$

= $\frac{x}{|-x|}$ for $|x| < 1$.

We can rewrite $S(x) = \sum_{k=1}^{\infty} \mu(k) f(x^k)$