$\operatorname{Sec} 16.2$ Part B Started here week 14 Friday

Assume P is a locally finite poset (every interval is finite, egg. \mathbb{N}, Recall Def 16.11 the set of all integer partitions)
the zeta function $\zeta \in \underbrace{I(P)}_{\text {incidence algebra, }}$ the set of all functions $f=\underbrace{\operatorname{Int}(P)}_{\text {nonempty }} \rightarrow \mathbb{R}$
nonempty
is defined by $\zeta([x, y])=1$ for all nonempty intervals $[x, y]$
Recall $\underbrace{\delta^{\text {delta }} \text { is the function where }}_{\text {the "identity matrix" }} \delta([x, y])= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}$

Def 16.14
The inverse of the zeta function of P is called the Möbius function of P. Denote this M or $M P . \quad$ Note: $M \zeta_{\text {zeta }}=\delta_{\operatorname{decta}}=\zeta_{M}$.
Thu 16.15

$$
\begin{aligned}
& \text { (1) } M([x, x])=1 \text { and }(2) \mu([x, y])=-\sum_{x \leq z<y} \mu([x, z]) \quad \text { if } x<y . \\
& {\left[\begin{array}{lll}
\text { le. } & 0=\sum_{z \in[x, y]} M([x, z]) \text { for all } x<y .
\end{array}\right.}
\end{aligned}
$$

Pf (1) Let $x \in P$.

$$
\begin{aligned}
1 & =\delta([x, x]) \\
& =(\mu \zeta)([x, x]) \\
& =\sum_{z \in[x, x]} \mu([x, z]) \zeta \\
& =\mu([x, x]) \zeta([x, x]) \\
& =\mu([x, x]) \cdot 1
\end{aligned}
$$

by def of μ
(the incidence alg)
by def of multiplication in I(P) ($\mathrm{sec} \operatorname{Sec} 16.2 \operatorname{Def} 16.10$)
by def of the zeta function.
(2) Let $x<y$.

$$
\begin{aligned}
0 & =\delta([x, y]) \\
& =\mu \zeta([x, y])
\end{aligned}
$$

by def of the "identity" δ function by def of μ

$$
\begin{aligned}
& =\sum_{z \in[x, y]} \mu([x, z]) \zeta([z, y]) \quad \text { by def of multiplication in I(P) } \\
& \begin{array}{l}
\text { see } \operatorname{Sec} 16.2 \text { Def } 16.10)
\end{array} \\
& =\sum_{z \in[x, y]} \mu([x, z]) \quad \text { since } \zeta([z, y])=1 \text { for all } z \leq y .
\end{aligned}
$$

We've shown that the sum of $M([x, z])$ taken over all $z \in[x, y]$ is 0 . Chm

Cor If $x<y$, then

$$
\mu([x, y])=-\sum_{x<z \leq y} \mu(z, y) .
$$

(The same proof but use $\tau \mu=\delta$ instead of $\mu \tau=\delta$).

Example 16.17
Using Thm 16.15 to
compute values of $M([x, y])$ from the bottom up.

Example 16.18
Let P be the poset of all nonnegative integers.
If $x,<y$, then

$$
\mu([x, y])=\left\{\begin{aligned}
&-1 \text { if } \\
& 0+1=y \\
& 0 \text { if } \\
& x+1<y
\end{aligned}\right.
$$

Pf Let $x \in \mathbb{N}$
Base case: $y=x+1$ and $y=x+2$
Induction step: Suppose the statement is true all y less than $x+k$.
Prove that the statement holds for $x+k$.
HW) Finish the proof.
Example $16.19 \quad P=B_{n}$. If $S \subseteq T$, then

$$
M([S, T])=(-1)^{|T-S|}
$$

How) Read the proof in Bona
Pf We apply strong induction on $k=|T-S|$.
compute $\mu([S, T])$

5

Example 16.20
$P=\mathbb{Z} \geqslant 1$ where $\begin{aligned} & x \leq y \text { iff } \\ & x \text { is a factor of } y .\end{aligned}$
(1) If $\frac{y}{x}=P_{1} p_{2} \ldots P_{k}$ is a product of distinct primes,

$$
M([x, y])=(-1)^{k}
$$

(2) Otherwise (if $\frac{y}{x}$ is divisible by the square of a prime number) $M([x, y])=0$ ended here week 14 Friday

Pf HW Attempt to prove (1), then read Bona's proof.
Note that the intervals $\left[1, \frac{y}{x}\right]$ and $[x, y]$ are isomorphic as posets. So it's enough to prove (2)
in the special case when $x=1$.
We prove (2) by strong induction on y.
First step:

$$
\begin{aligned}
M([1,4])=0 \text { because } M([2,4]) & =-\sum_{z \in(2,4]=\{4\}} M([z, 4]) \quad \text { Thy } 16.15 \\
& =-\mu([4,4]) \\
& =-1 \quad \text { by Chm } 16.15 \\
M([1,4]) & =-\sum_{z \in(1,4]=\{2,4\}} \quad M([z, 4]) \quad \text { Thu } 16.15
\end{aligned}
$$

$$
\begin{aligned}
& =-\mu([2,4])-M([4,4]) \\
& =-(-1)-1 \\
& =0
\end{aligned}
$$

Inductive step:
Assume the statement is true for all positive integers smaller than y.
Let $p_{1}, P_{2}, \ldots, P_{k}$ be distinct prime divisors of y j at least one of them occurs in the prime factorization of y more than once, Call a divisor of y good if it is not divisible by the square of a prime. Call a divisor of y bad if it is divisible by the square of a prime.

Note that $\{$ good integers $z\}=\left[1, p_{1} p_{2} \ldots p_{k}\right]$

$$
z \in\left[1, p_{1} \ldots p_{k}\right]
$$

$$
=0 \text { by Thm } 16.5
$$

$\sum_{z \text { bad }} M([1, z]) \stackrel{(* *)}{=} M$ because $M([1, z])$ for all bad integers $z \neq y$
Then $M(y)=-\sum_{1 \leq z<y} M([1, z])$ by Thm 16.15

$$
=-\sum_{z \operatorname{good}} M([1, z])-\sum_{z \text { bad }} M([1, z])
$$

$=-0-0$ by $(*)$ and $(* *)$
$=0$, as needed ended here Week IS Monday

Why do we care about the Möbius function?
Let $\left\{a_{i}\right\}_{i=0}^{\infty}$ be a sequence of real \#s.
Define $b_{n}=\sum_{i=0}^{n} a_{i}$ for $n \geqslant 0$.
Note: Given the b_{i}, we can compute the a_{i} by $a_{n}=b_{n}-b_{n-1}$.

The 16.21 Möbius Inversion Formula
Let $f=P \rightarrow \mathbb{R}$ be a function.
Let $g=P \rightarrow \mathbb{R}$ be defined by

$$
g(y)=\sum_{x \leq y} f(x)
$$

Then $f(y)=\sum_{x \leq y} g(x) \mu([x, y])$
Proof
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a linear extension of P.
Let $\bar{f}=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right]$

$$
\bar{g}=\left[g\left(x_{1}\right), g\left(x_{2}\right), \ldots, g\left(x_{n}\right)\right]
$$

Let Z be the zeta matrix of p and let M be the Möbius matrix of $P^{(}$(the inverse of Z). Then $\bar{f} Z=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right] Z$

$$
\begin{align*}
& =\left[g\left(x_{1}\right), g\left(x_{2}\right), \ldots, g\left(x_{n}\right)\right] \text { because } g(y)=\sum_{x \leq y} f(x) \tag{2}\\
& =\bar{a}
\end{align*}
$$

$$
=\bar{g}
$$

Then $\quad \bar{f} Z M=\bar{g} M$
so $\bar{f}=\bar{g} M$ since $Z M=I$ by def of M
Hence $f(y)=\sum_{x \leq y} g(x) \mu([x, y])$.

Ref: The Early (and Peculiar) History of the Möbius Fun An application of μ
Problem : For $|x|<1$, compute

$$
\begin{array}{r}
S(x)=\frac{x}{1-x}-\frac{x^{2}}{1-x^{2}}-\frac{x^{3}}{1-x^{3}}-\frac{x^{5}}{1-x^{5}}+\frac{x^{6}}{1-x^{6}}-\frac{x^{7}}{1-x^{7}}+\frac{x^{10}}{1-x^{10}} \\
\quad \frac{x^{11}}{1-x^{11}}-\frac{x^{13}}{1-x^{13}}+\frac{x^{14}}{1-x^{14}}+\frac{x^{15}}{1-x^{15}}-\frac{x^{17}}{1-x^{17}}-\ldots
\end{array}
$$

Answer
Recall $\quad \mu([1,1])=1$
$M([1, y])=\left\{(-1)^{k}\right.$ is y is the product of k distinct primes if y is divisible by the square of a prime.
write $\mu(y):=\mu([1, y])$ (for simplicity)
Note $=\mu(1)=1, \mu(2)=\mu(3)=\mu(5)=\ldots=\mu(17)=(-1)^{1}$

$$
\begin{aligned}
& \mu(6)=\mu(10)=\mu(14)=\mu(15)=(-1)^{2} \\
& \mu(8)=\mu(12)=\mu(16)=0
\end{aligned}
$$

Let $f(x)=x+x^{2}+x^{3}+x^{4}+\ldots$

$$
=\frac{x}{1-x} \text { for }|x|<1
$$

We car rewrite $S(x)=\sum_{k=1}^{\infty} \mu(k) f\left(x^{k}\right)$

