- week 13 wed started here -Sec 16.3 Lattices Let P be a poset, & let a, b, x, y EP. Def • a is an upper bound for \times iff $\times \leq a$ • b is a lower bound for \times iff $b \leq \times$ • a is a common upper bound for x and y iff a is an upper bound for both x and y · b is a common lower bound for x and y iff b is a lower bound for both x and y · a is the minimum common upper bound (or sup) or join of X & Y iff a is smaller than or equal to every upper bound of $x \ll y$, written $a = x \vee y$ · b is the maximum common lower bound (or inf) or meet of x ey iff b is larger than or equal to every lower bound of x & y, B3 (12.33 written b= XAY [2] has 4 upper bounds, including itself [2] has 2 lower bounds, - 11 $\{1,2\}$ p [2,3] $\left\{2\right\}_{\tilde{J} \in T_{N}}\left\{3\right\} = \left\{2,3\right\}$ £13 $\{2\} \land \{3\} = \emptyset$ [2] A {2} = {2} A has 4 upper bounds: A, C, D, F B has 4 upper bounds: B, C, D, F A and B does not have a minimum common upper bound (join), AVB does not exist. $A \wedge B = E$ meet CAD does not exist.

Def A poset L is called a lettice if any two elements x ady of L
have a join XVY and a meet XAY.
(sp)
The poset Bn is a lettice.
If for any two subsets SE [n] and TE [n],
the minimum subset of [D] containing both
S and T is SUT, so SUTE SVT.
Similarly, SATE SAT.
Def (Exercise 12,12)
A lettice L is distributive IFF
for all XIYZEL, XV(
$$yAz$$
)= (xVy) A (XV2)
Frep The (dire Bn is distributive (Exercise 25)
The tet X, y_1z be subsets of [D].
Since SUT = SVT and SATE SATE V SJTE [D].
We only need to show
XU(yAz) = (XU y) A (XV2).
But te XU(yAz) = (XU y) A (XV2).
But te XU(yAz) = (XU y) A (XV2).
But te XU(yAz) = (XU y) A (XV2).
But te XU(yAz) = (XU y) A (XV2).
But te XU(yAz) = (XU y) A (XV2).
But te XU(yAz) = (XU y) A (XV2).
But te XU(yAz) = (XU y) A (XU2).
But te XU(yAz) = (XU y) A (XU2).
But te XU(yAz) = (XU y) A (XU2).
But te XU(yAz) = (XU y) A (XU2).
The jet of all finite subsets of Zy1 endered by inclusion
is a lettice where SVT = SUT and SAT = SAT
This jettice has no maximumi element.

Q: 15 this a lattice?

Def. A poset L is called meet-semilattice if, for any two elts x and y of L, the meet X My exists. join-semilattice if, , the join ×Vy exists. _ LL Prop 16,29 X, Y, t E P Poset Olf XEt, yEt, and XVy exists, then XVy Et. (2) If $r \leq x$, $r \leq y$, and $\times A y$ exist, then $r \leq \times A y$. meet Proof of @ Suppose r < x and r < y. Then r is a common lower bound for x and y. Sor must be equal to or less than the maximum common lower bound for x and y which is XAY by def. Lemma 16.30 Let L be a finite meet-semilattice w/a maximal element. Then L is a lattice. Proof Let x, y E L. We only need to show that XV y exists. Let B = { all common upper bounds of x and y }. We know B is not empty because the maximum eff of L is in B. If the minimum elt of B exists, then it is by def equal to XVy. To show that B has a minimum elt, let B= {bi, b2, -..., bx }. (Note: We know B is finite because L is finite.) Then b, Abz A-.. Abk exists (since L is a meet-semilattice). Denote this elt by b. (We want to show that b & B.) Since $x \leq b_1$, $x \leq b_2$, ..., $x \leq b_k$, we have $x \leq b_1 \land b_2 \land \dots \land b_k =: b_2$ by Prop 16.292 we have $y \leq b_1 \wedge b_2 \wedge \dots \wedge \wedge b_k = b_1$ Hence b ∈ B. Since b ≤ b; V i=1,2,..., k, we conclude that b is the minimum ended here week 13 Friday

Started here week 14 Mon-

Lemma: The Dominance order Dn is a meet-semilattice. <u>Pf of Lemma</u>

Suppose
$$a=(a_1, ..., a_n)$$
 and $b_1(b_1, ..., b_1)$ are partitions of n.
Let $\hat{a}_0 = 0$ $\hat{b}_0 = 0$
 $\hat{a}_1 = a_1$ $\hat{b}_k = b_1 + b_2 + ... + b_k$ for all $k = 1, ..., b_n$
 $\hat{a}_2 = a_1 + a_2$ $\hat{b}_n = n$
 $\hat{a}_n = a_1 + a_2 + ... + a_n = n$
and $\hat{a} = (\hat{a}_0, \hat{a}_1, ..., \hat{a}_n)$, $\hat{b} = (\hat{b}_0, \hat{b}_1, ..., \hat{b}_n)$

Note: to go from
$$(\hat{c}_0, \hat{c}_1, ..., \hat{c}_n)$$
 to $(c_1, ..., c_n)$,
let $c_1 = \hat{c}_1 - \hat{c}_0$, $c_2 = \hat{c}_2 - \hat{c}_1$, ..., $C_k = \hat{c}_k - \hat{c}_{k-1}$
Example:
 $\downarrow \qquad \hat{c}_1 = \hat{c}_1$
 $\downarrow \qquad \hat{c}_2 = 5$
 $\hat{c}_3 = 6$
 $\hat{c}_6 = \hat{c}_6$
Let $\hat{c}:= (\hat{c}_0, \hat{c}_1, ..., \hat{c}_n)$ where $\hat{c}_k = \min(\hat{a}_k, \hat{b}_k)$ for all $k = 0, 1, ..., n$.

 $\frac{Claim:}{The corresponding Sequence C = (C_1, ..., C_n) where C_k = \hat{C}_k - \hat{C}_{k-1} \text{ for all} k=1, ..., k=1, ..., n$ $\frac{Proof of claim}{R}$

• Need to show
$$C_{1+\dots+C_n} = h:$$

 $C_{1+C_{2}+\dots+C_n} = (\hat{C}_{1}-0)+(\hat{C}_{2}-\hat{C}_{1})+(\hat{C}_{3}-\hat{C}_{2})+\dots+(\hat{C}_{n}-\hat{C}_{n-1})$
 $= \hat{C}_n$
 $= \min(\hat{A}_n, \hat{b}_n)$
 $= N$ because $\hat{A}_n = \hat{b}_n = n$ as we noted earlier.

• Three Lemmas for chowing
$$C_{1} \gg C_{2} \gg \cdots \gg C_{n}$$
:
Lemmi: 2 $\hat{h}_{k} \geqslant \hat{h}_{k-1} + \hat{h}_{k+1}$ for all $k = 1, 2, \dots, N-1$ (and the same statement)
2 $\hat{h}_{k} \gg \hat{h}_{k-1} + \hat{h}_{k+1}$
 $T_{1}: 2 (a_{1} + a_{2} + \dots + a_{n-1}) + 2a_{k} \geqslant 2 (a_{1} + a_{2} + \dots + a_{k-1}) + a_{k} + a_{k+1}$
 $Since $a_{k} \geqslant a_{k+1}$ (because $a \ge n \text{ partition}$
 $Since $a_{k} \geqslant a_{k+1}$ (because $a \ge n \text{ partition}$
 $Since $a_{k} \geqslant a_{k+1}$ (because $a_{k} \ge n \text{ partition}$
 $Since $a_{k} \geqslant a_{k+1}$ (because $a_{k} \ge n \text{ partition}$
 $Since $a_{k} \ge a_{k+1}$ (because $a_{k} \le a_{k+1}$)
 $F_{1}: \hat{C}_{k} \le \min(\hat{a}_{k}, \hat{b}_{k}) \le \min(\hat{a}_{k+1}, \hat{b}_{k+1})$ because $\hat{a}_{k} \le \hat{a}_{k+1}$
 $= \hat{C}_{k+1}$
Lemma 4: $\min(\hat{a}_{k}, \hat{b}_{k}) \ge \min(x_{1}\hat{x}) + \min(y, \psi)$ if $x_{1}y_{1}z_{1}, \psi \ge 0$
 $\min(x + y, z + \psi) = \frac{x + y + z + \psi - (x + y - z + \omega)]}{z}$ (by $\frac{4\pi + a_{1}(z_{1})}{z} + y_{1} + \psi]$
 $= \min(x_{k}, z_{1}) + \min(y_{1}, \psi)$
 $\lim_{x \to x + y + 2} \hat{C}_{k} = 1 + (x + 2) - |x - 2| - |y - \omega|$ (by $\frac{4\pi + a_{1}(z_{1})}{z} + y_{1} + \psi]$)
 $\lim_{x \to x + y + 2} \frac{2}{z} + \sum_{k} (a_{k}, z_{k}) + \min(y_{1}, \psi)$ (by $\frac{4\pi + a_{1}(z_{1})}{z} + y_{1} + y_{1} + \psi]$
 $\lim_{x \to y + 1} (x_{k}, z_{k}) + \min(y_{1}, \psi)$ (by $\frac{4\pi + a_{1}(z_{1})}{z} + y_{1} + y_{1} + \psi]$
 $\lim_{x \to x + y + 2} \frac{2}{z} + \frac$$$$$$

: we have shown that $C = (C_1, ..., C_n)$ is a partition of n (Note: the same idea doesn't work for join and max)

Then a is a common lower bound of a and b
because
$$c_1 + c_2 + \ldots + c_k$$
 def $c_k = \min(\theta_k) \delta_k \ge \theta_k + \theta_k + \ldots + \theta_k} \int_k^k find that def find the def $c_k + \ldots + d_k = 0$
It is also the greatest common lower bound of a and b.
To see this, let $d = (\theta_1, \theta_2, \ldots, \theta_n)$ where
 $\theta_0 = 0$
 $\theta_k = \theta_1 + \ldots + \theta_k$ for all $k = 1, \ldots, n$
 $\theta_k = \theta_1 + \ldots + \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_1 + \ldots + \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $k = 1, \ldots, n$
 $f_k = \theta_k$ for all $h_k = 0$ for h_k for all h_k for $h_k$$

Def (Ch 14 Exercise #15 pg 365)
A (set) partition
$$\pi$$
 of [n] having blocks $\beta_1, \beta_2, ..., \beta_k$
is called non-crossing iff:
there are no four elts $1 \le a \le b \le c \le d \le n$ so-flat
 $a, c \in \beta_i$ and $b, d \in \beta_j$ for some distinct blocks β_i and β_j .
J.e. no
 $a, c \in \beta_i$ and $b, d \in \beta_j$ for some distinct blocks β_i and β_j .
J.e. no
 $a, c \in \beta_i$
 $i_{1,3,4,5,3}[2][6;6]$
is a non-crossing
partition of [6]
 $b = \frac{1}{2}$
 $b = \frac{1}{2}$

$$\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$$

Then
$$c \leq \alpha$$
 (and $c \leq \beta$) because
if i and j are connected in c then i and j are connected in α (resp β),
so c is a common lower bound of α and β .
To show that c is the maximum common lower bound,
suppose $J \in NCh$ with $J \leq \alpha$, $J \leq \beta$.
To show that $d \leq c$, we need to show:
Elf i and j are connected in J ,
then i and j are connected in C .
Suppose i and j are connected in c .
Then i and j are connected in α and β (since $J \leq \alpha, J \leq \beta$).
Then, by def of c , we must have i and j be connected in C .
("We've shown that c is the meet of x and y) (and of Lemma
Corollary NC n is a lattice
 Pf By the previous lemmas,
NCn is a uncet-semilattice with a maximum element.

Since NCh is finite, it is a lattice by Lemma 16.30.