$\operatorname{Sec} 16.3$ Lattices Week 13 wed started here
Def Let P be a posit, \& let $a, b, x, y \in P$.

- a is an upper bound for x iff $x \leq a$
- b is a lower bound for x iff $b \leq x$
- a is a common upper bound for x and y iff
a is an upper bound for both x and y
- b is a common lower bound for x and y iff b is a lower bound for both x and y
- a is the minimum common upper bound (or sup) or join of $x \& y$
iffy a is smaller than or equal to every upper bound of $x \& y$, written $a=x \vee y$
- b is the maximum common lower bound (or inf) or meet of $x * y$
iff b is larger than or equal to every lower bound of $x \& y$,

written $b=x \wedge y$
$\{2\}$ has 4 upper bounds, including itsetf
$\{2\}$ has 2 lower bounds,
$\{2]_{\text {join }}^{V}\{3\}=\{2,3]$
$\{2\}_{\text {meet }} \wedge_{3}\left\{\begin{array}{l} \\ \hline\end{array}\right.$
$[2\} \wedge\{2\}=\{2\}$

$$
\begin{aligned}
& \quad A \text { has } 4 \text { upper bounds: } A, C, D, F \\
& B \text { has } 4 \text { upper bounds: } B, C, D, F \\
& A \text { and } B \text { does not have a minimum common upper bound (join), } \\
& A \cup B \text { does not exist. } \\
& A \wedge B=E \\
& A_{\text {meet }} B \cap D \text { does not exist, }
\end{aligned}
$$

Def A poset L is called a lattice if any two elements x and y of L have a join $x \vee y$ and a meet $x \wedge(\operatorname{linf})$
(\sup)

Prop The poset B_{n} is a lattice.
Pf For any two subsets $S \subseteq[n]$ and $T \subseteq[n]$, the minimum subset of [n] containing both S and T is $S \cup T$, so $S U T=S V T$.

Similarly, $\quad S \cap T=S \wedge T$.
Def (Exercise 12,13)
A lattice L is distributive iff for all $x, y, z \in L, \quad x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$

Prop The lattice B_{n} is distributive (Exercise 25)
Proof Let x, y, z be subsets of $[n]$.
Since $S \cup T=S V T$ and $S \cap T=S \wedge T \quad \forall S, T \subseteq[n]$,
we only need to show

$$
x \cup(y \cap z)=(x \cup y) \cap(x \cup z)
$$

But $t \in x \cup(y \cap z)$
Iff $t \in x$ or $(t \in y$ and $t \in z)$,
iff $(t \in x$ or $t \in y)$ and $(t \in x$ or $t \in z)$ (work on Ww) ended here week 13 wed started here week 13 Friday

Remark
The pose of all finite subsets of $\mathbb{Z} \geqslant 1$ ordered by inclusion is a lattice where $S V T=S U T$ and $S \wedge T=S \cap T$. This lattice has no maximal element.

From Ch 16 Exercise (\#48)
Let $n \in \mathbb{Z} \geqslant 1$
Define a partial order $\left(\begin{array}{c}\text { called the } \\ \text { dominance } \\ \text { order }\end{array}\right)$ on the set of all partitions of n :
We say $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \leqslant b=\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ iff

a_{k}

$$
\sum_{i=1}^{k} a_{i}=a_{1}+a_{2}+\ldots+a_{k} \leq \sum_{i=1}^{k} b_{i}=b_{1}+b_{2}+\ldots+b_{k} \text { for all } k \geqslant 1 .
$$

$$
\frac{\square \square \square \square}{(4,0,0,0)^{4}}
$$

$$
\begin{aligned}
& 1 \\
& \square \quad \begin{array}{l}
0 \\
3+1
\end{array}=4
\end{aligned}
$$

$$
(3,1,0,0)
$$

$$
\begin{aligned}
\square & 2
\end{aligned}=\begin{aligned}
& 2 \\
& 2+2
\end{aligned}=4
$$

$$
\begin{array}{ll}
1 & 0 \\
\square & =1 \\
1+1 & =2 \\
1+1+1 & =3 \\
1+1+1+1 & =4
\end{array}
$$

$$
\begin{aligned}
& =0 \\
3 & =3 \\
3+2 & =5 \\
3+2+1 & =6
\end{aligned}
$$

$$
\min \left(a_{1}+a_{2}, b_{1}+b_{2}\right)-a_{1}
$$

$$
\min \left(a_{1}+a_{2}+a_{3}, b_{1}+b_{2}+b_{3}\right)-a_{2}-a_{1}
$$

Q: Is this a lattice?

> Def. A poset L is called meet-semilattice if, for any two ells x and y of L, the meet $x \wedge_{y}$ exists. - join-semilattice if, $"$, the join $x v_{y}$ exists.

Prop 16.29
$x, y, t \in P$ poses
(1) If $x \leq t, y \leq t$, and $x V^{\text {join }} y$ exists, then $x v y \leq t$.
(2) If $r \leq x, r \leq y$, and $\times \wedge_{\text {meet }} y$ exist, then $r \leq x \wedge y$,

Proof of (2) Suppose $r \leqslant x$ and $r \leqslant y$.
Then r is a common lower bound for x and y.
Sor must be equal to or less than the maximum common lower bound
Lemma 16.30 which is $x \wedge y$ by def.

Let L be a finite meet-semilattice w/ a maximal element.
Then L is a lattice.
Proof
Let $x, y \in L$. We only need to show that $x V y$ join exists.
Let $B=\{$ all common upper bounds of x and $y\}$.
We know B is not empty because the maximum elf of L is in B.
If the minimum elf of B exists, then it is by def equal to $\times{ }_{\text {jo }} \mathrm{V} y$.
To show that B has a minimum elf, let $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$.
(Note: we know B is finite because L is finite.)
Then $b_{1} \wedge b_{2} \wedge \ldots \wedge b_{k}$ exists (since L is a meet-semilattice).
Denote this elf by b. (We want to show that $b \in B$.)
Since $x \leq b_{1}, x \leq b_{2}, \ldots, x \leq b_{k}$,
$\left.\begin{array}{ll}\text { we have } & x \leq b_{1} \wedge b_{2} \wedge \ldots \wedge b_{k}=: b \\ \text { Similarly, since } y \leq b_{i} \text { for all } i=1,2 \ldots, k \\ \text { we have } & y \leq b_{1} \wedge b_{2} \wedge \ldots \wedge b_{k}=, b\end{array}\right\}$ by Prop 16.29(2)
Hence $b \in B$.
Since $b \leq b_{i} \quad \forall i=1,2, \ldots, k$, we conclude that b is the minimum Since $b \leq b_{i} \forall i=1,2, \ldots, k$, we conclude that b is the minimum

Started here week 14 Mon
Lemma: The Dominance order D_{n} is a meet-semilattice. Pf of Lemma

Suppose $a=\left(a_{1}, \ldots, a_{s}\right)$ and $b=\left(b_{1}, \ldots, b_{t}\right)$ are partitions of n.
Let $\hat{a}_{0}=0$
$\hat{a}_{1}=a_{1}$
$\hat{a}_{2}=a_{1}+a_{2}$
$\hat{a}_{n}=a_{1}+a_{2}+\cdots+a_{n}^{\text {note }}=n$
and $\hat{a}=\left(\hat{a}_{0}, \hat{a}_{1}, \ldots, \hat{a}_{n}\right), \hat{b}=\left(\hat{b}_{0}, \hat{b}_{1}, \ldots, \hat{b}_{n}\right)$

Note : to go from $\left(\hat{C}_{0}, \hat{C}_{1}, \ldots, \hat{C}_{n}\right)$ to $\left(C_{1}, \ldots, C_{n}\right)$,

$$
\text { let } C_{1}=\hat{C}_{1}-\hat{C}_{0}, C_{2}=\hat{C}_{2}-\hat{C}_{1}, \ldots, C_{k}=\hat{C}_{k}-\hat{C}_{k-1}
$$

Example:

$$
\begin{aligned}
& \hat{c}_{0}=0 \\
& \hat{c}_{1}=4 \\
& \hat{c}_{2}=5 \\
& \hat{c}_{3}=6 \\
& c_{3} \\
& 6 \\
& 6 \\
& \hat{c}_{6}=6
\end{aligned}
$$

Let $\hat{c}:=\left(\hat{C}_{0}, \hat{c}_{1}, \ldots, \hat{C}_{n}\right)$ where $\hat{c}_{k}=\min \left(\hat{a}_{k}, \hat{b}_{k}\right)$ for all $k=0,1, \ldots, n$.

Claim:
The corresponding sequence $C=\left(c_{1}, \ldots, C_{n}\right)$ where $C_{k}=\hat{C}_{k}-\hat{C}_{k-1}$ for all is a partition of n.
Proof of claim

- Need to show $C_{1}+\ldots+C_{n}=n$:

$$
\begin{aligned}
c_{1}+c_{2}+\ldots+c_{n} & =\left(\hat{c}_{1}-0\right)+\left(\hat{c}_{2}-\hat{c}_{1}\right)+\left(\hat{c}_{3}-\hat{c}_{2}\right)+\ldots+\left(\hat{c}_{n}-\hat{c}_{n-1}\right) \\
& =\hat{c}_{n} \\
& =\min \left(\hat{a}_{n}, \hat{b}_{n}\right)
\end{aligned}
$$

$$
=n
$$

because $\hat{a}_{n}=\hat{b}_{n}=n$ as we noted earlier.

- Three lemmas for showing $c_{1} \geqslant c_{2} \geqslant \ldots \geqslant c_{n}$:

Lemmal: $2 \hat{a}_{k} \geqslant \hat{a}_{k-1}+\hat{a}_{k+1}$ \} for all $k=1,2, \ldots, n-1$ (and the same statement

$$
\begin{array}{ll}
2 \hat{b}_{k} \geqslant \hat{b}_{k-1}+\hat{b}_{k+1} \\
\text { Pf: } \quad & 2\left(a_{1}+a_{2}+\ldots+a_{k-1}\right)+2 a_{k} \geqslant 2\left(a_{1}+a_{2}+\ldots+a_{k-1}\right)+a_{k}+a_{k+1}
\end{array}
$$ since $a_{k} \geqslant a_{k+1} \quad\left(\begin{array}{c}\text { because } a \\ \text { so the sequence is partition }\end{array}\right.$ so the sequence is non-increasing)

Lemma 2: $\hat{C}_{k} \leq \widehat{C}_{k+1}$ for all $k=0,1, \ldots, n-1$ Pf: $\hat{C}_{k}=\min \left(\hat{a}_{k}, \hat{b}_{k}\right) \leq \min \left(\hat{a}_{k+1}, \hat{b}_{k+1}\right)$ because

$$
\hat{a}_{k} \leq \hat{a}_{k+1}
$$

$$
=\widehat{C}_{k+1}
$$

Lemma 4: $\min (x+y, z+\omega) \geqslant \min (x, z)+\min (y, w)$ if $x, y, z, \omega \geqslant 0$

To show $C_{1} \geqslant C_{2}$:

$$
2 C_{1}=2 \hat{C}_{1} \geqslant 0+\hat{C}_{2}=c_{1}+C_{2}
$$

so $c_{1} \geqslant c_{2}$
To show $c_{2} \geqslant c_{3}$:

$$
2\left[c_{1}+c_{2}\right]=2 \hat{c}_{2} \geqslant \hat{c}_{1}+\hat{c_{3}}=c_{1}+c_{1}+c_{2}+c_{3}
$$

so $\quad C_{2} \geqslant C_{3}$
To show $C_{k} \geqslant C_{k+1}$ for all $k=1, \ldots, n-1$;

$$
\begin{aligned}
\hat{C}_{k}+\hat{C}_{k-1}+C_{k} & =2 \hat{C}_{k} \geqslant \hat{C}_{k-1}+\hat{C}_{k+1}=\hat{C}_{k-1}+\hat{C}_{k}+C_{k+1} \\
& \text { So } \quad C_{k}
\end{aligned}
$$

\therefore we have shown that $c=\left(C_{1}, \ldots, C_{n}\right)$ is a partition of n (Note: the same idea doesn't work for join and max)

$$
\begin{aligned}
& \min (x+y, z+\omega)=\frac{x+y+z+\omega-\mid x+y-z-\omega) \mid}{2} \\
& \geqslant \frac{x+y+z+w-|x-z|-|y-w|}{2} \\
& =\min (x, z)+\min (y, \omega) \\
& \text { lemma 3: } 2 \hat{C}_{k} \geqslant \hat{C}_{k-1}+\hat{C}_{k+1} \text { for all } k=1,2, \ldots, n-1 \\
& P_{f} \\
& 2 \hat{c}_{k}=2 \min \left(\hat{a}_{k}, \hat{b}_{k}\right) \\
& =\min \left(2 \hat{a}_{k}, 2 \hat{b}_{k}\right) \\
& \geqslant \min \left(\hat{a}_{k-1}+\hat{a}_{k+1}, \hat{b}_{k-1}+\hat{b}_{k+1}\right) \\
& \geqslant \min _{\hat{a}}\left(\hat{a}_{k-1}, \hat{b}_{k-1}\right)+\min \left(\hat{a}_{k+1}, \hat{b}_{k+1}\right) \text { by Lemma } 4 \\
& =\hat{c}_{k-1}+\hat{c}_{k+1} \\
& \text { due to } \\
& \text { Lemma } 1
\end{aligned}
$$

Then c is a common lower bound of a and b because

$$
\left.\begin{array}{rl}
c_{1}+c_{2}+\ldots+c_{k} \stackrel{\text { def }}{=} \hat{c}_{k} & =\min \left(\hat{a}_{k}, \hat{b}_{k}\right)
\end{array} \begin{array}{l}
\| \hat{a}_{k} \stackrel{\text { def }}{=} a_{1}+a_{2}+\ldots+a_{k} \\
\end{array}\right\} \begin{gathered}
\text { for all } \\
k
\end{gathered}
$$

It is also the greatest common lower bound of a and b. To see this, let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a common lower bound for a and b. Let $\hat{d}=\left(\hat{d}_{0}, \hat{d}_{1}, \ldots, \hat{d}_{n}\right)$ where

$$
\begin{aligned}
& \hat{d}_{0}=0 \\
& \hat{d}_{k}=d_{1}+\ldots+d_{k} \text { for all } k=1, \ldots, n \\
& \hat{d}_{n}=n .
\end{aligned}
$$

Then $\hat{d}_{k} \leq \hat{a}_{k}$

$$
\begin{aligned}
& d_{k} \leq a_{k} \\
& \hat{d}_{k} \leq \hat{b}_{k}
\end{aligned} \quad \text { for all } \quad k=1, \ldots, n
$$

So

$$
\begin{aligned}
\hat{d}_{k} & \leq \min \left(\hat{a}_{k}, \hat{b}_{k}\right) \\
& =\hat{c}_{k}
\end{aligned}
$$

By def (of dominance order), $d \leq C$.
Chm (Exercise \#48)
The Dominance order D_{n} is a lattice.
Proof
The set D_{n} is finite because there are finitely many partitions of n.
Claim The partition (n)
is the maximum element of D_{n}.
Pf of claim: Suppose $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a partition of n. Then $a_{1} \leq n$

$$
\begin{aligned}
& a_{1}+a_{2} \leq n \\
& \vdots \\
& a_{1}+a_{2}+\ldots+a_{k} \leq n
\end{aligned}
$$

The previous lemma says that D_{n} is a meet-semilattice.
Lemma 16.30 that any finite meet-semi lattice with a maximum elf is a lattice ended here week Th

Def (Ch 14 Exercise \#15 pg 365) Start here week 14 wed A (set) partition π of $[n]$ having blocks $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ is called non-crossing of:
there are no four elts $1 \leq a<b<c<d \leq n$ so that
$a, c \in \beta_{i}$ and $b, d \in \beta_{j}$ for some distinct blocks β_{i} and β_{j}.
Ire, no

$\Delta_{E . g}$.

$\{1,3,4,5\}\{2\}\{6,7\}$
is a non-crossing

$$
\begin{aligned}
& \{1,4,5\}\{2\}\{3,6,7\} \text { and }\{14,5\}\{2\}\{3,6\}\{7\} \\
& \text { are } \frac{\text { not }}{} \text { non-crossing partitions } \\
& \text { of }[6] .
\end{aligned}
$$

Let $N C_{n}$ denote the set of all non-crossing partitions of $[n]$. Put the refinement order (Example 16.6) on $N C_{n}$:
Say $\alpha \leq \beta$ iff each block of β is a union of some blocks of α. Ire. $\alpha \leqslant \beta$ iff $[$ if i and j are connected in α, then i and j are connected in β]

This is called the kreweras poset.

$$
\text { Ex } n=2,3,4
$$

Note the \#s are $2,5,14$.
Fun fact: \#N Ch is the m-th Catalan \#.
Lemma The one-block eft $\{1,2,3, \ldots, n\}$ is the maximum et of $N C_{n}$.
Lemma $N C_{n}$ is a meet-semi lattice,
with $\alpha \wedge_{\text {meet }} \beta$ being the set partition such that
the elts i and j are in the same block in $\alpha \Lambda \beta$ iff
i and j are in the same block in both α and β,
i.e, i and j are connected in $\alpha \wedge \beta$ iff
i and j are connected in both α and β,
Ex $\alpha=\overbrace{2} 0 \quad c=\underbrace{0}_{2} A_{3} \quad c=1$

$$
\alpha \wedge \beta=\overbrace{\text { meet }}^{1} \frac{8}{8} 3 l_{4}^{\rho} \quad \text { and } \quad \alpha \wedge c=\begin{array}{llll}
1 & 8 & \Omega \\
1 & 2 & 3 & 4
\end{array}
$$

Prof Let $\alpha, \beta \in N C_{n}$.
Let c be the partition of $[n]$ s.t
i and j are in the same block in C iff i and j are (in the same block)

$$
\text { HF Prove that } c \text { is non-crossing. }
$$

Then $c \leq \alpha$ (and $c \leq \beta$) because if i and j are connected in C then i and j are connected in α (resp β), So C is a common lower bound of α and β.
To show that C is the maximum common lower bound,
suppose $l \in N C_{h}$ with $\quad l \leq \alpha, \quad l \leq \beta$.
To show that $l \leq c$, we need to show:
[If i and j are connected in l,
then i and j are connected in C J.
Suppose i and \bar{J} are connected in l.
Then i and j are connected in α and β (since $\ell \leq \alpha, \ell \leq \beta$).
Then, by def of C, we must have i and \bar{j} be connected in C. ("We've shown that c is the meet of x and y) end of lemma

Corollary NC n is a lattice
Pf By the previous lemmas,
$N C_{n}$ is a meet-semilattice with a maximum element.
Since $N C_{n}$ is finite, it is a lattice by Lemma 16.30.

