The famous Catalan \#s (Ref:8.1.2.1 or google "Catalan \#s')
Object 1: Grouping with n parentheses

$$
\begin{array}{ll}
n=1 & () \\
n=2 & (()), \\
n=3 & ((C))), \\
n)(()),(())(),(()()), \quad()()()
\end{array}
$$

Object 2: Full binary tree with n parent vertices Def A full binary tree is a tree with a distinguished vertex called the root s.t every parent vertex has exactly two children.

$n=1$

$n=2$
 but it has only one child.
 in Problem Set (week 10)

See also:
"binary trees with n vertices"

Object 3 : Triangulation of an $(n+2)$-gon

$$
\begin{aligned}
& n=1 \\
& n=2 \\
& n=3 \\
& n=4
\end{aligned}
$$

On board
in groups

$$
\triangle
$$

Pick your favorite objects k draw the objects for $n=4$

Problem Let $C_{0}=1$ and (Cont after presentations) let h_{n} denote the \#.f triangulations of an $(n+2)-$ go for $n \geqslant 1$.
(1) Prove that "the rec. rel $c_{n}=c_{0} c_{n-1}+c_{1} c_{n-2}+\ldots+c_{n-1} c_{0}$ for $n \geqslant 1$

Composer $C_{1}=1, \Delta$ and $C_{1}=C_{0} C_{0}$ is satisfied.
Let $n \geqslant 2$. Distinguish one side of the $(n+2)$ bo P and call it the base.
In any triangulation of P, the base forms one side of a triangle. E-0. if $n=6$ thus are 6 possibilities for the triangle which the base is a side of.

If the third corner is labeled 8 , then triangulate the remaining $\begin{gathered}7 \text {-goo in } C_{5} \text { ways. } \\ 5+2\end{gathered}$ If the third corner is labeled 7 , then triangulate ${ }_{8} A$, in c_{1} way and triangulate the 6 -gen ${ }^{2}$ in C_{4} ways, for a total of $C_{1} C_{4}$ triangulations.

If the third corner is labeled 6 , then triangulate the 4 Hon $85^{7} \sqrt{6}_{6}^{6}$ in C_{2} wags and triangul ate the $5-\mathrm{gon}$ $C_{0 \text { antinurg }}$ this produces $c_{6}=c_{5}+c_{1} c_{4}+c_{2} c_{3}+c_{3} c_{2}+c_{4} c_{1}+c_{5}$. In general, the same idea gives

$$
c_{n}=c_{n-1}+c_{1} c_{n-2}+c_{2} c_{n-3}+\cdots+c_{n-2} c_{1}+c_{n-1} \text { for } n \geqslant 1 \text {. }
$$

$$
\text { Sima } c_{0}=1 \text {, we can write } c_{n}=\sum_{k=0}^{n-1} c_{k} c_{n-1-k}
$$

-_ended hue wk 8 mm
(2) Use this recurrence relation to compute the generating function $F(x)=\sum_{n=0}^{\infty} C_{n} x^{n}$ ms Multiply the recurrence relation by x^{n} a sum over all $n \geqslant 1$

$$
\sum_{n=1}^{\infty} c_{n} x^{n}=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n} c_{k} c_{n-1-k x}\right) x^{n} \quad \text { LHS is } F(x)-c_{0}=F(x)-1 \text {. }
$$

RHS is $\underbrace{c_{0} c_{0} x^{1}}_{\text {for no 1 }}+\underbrace{\left(c_{0} c_{1}+c_{1} c_{0}\right) x^{2}}_{\text {or } n=2}+\underbrace{\left(c_{0} c_{2}+c_{1} c_{1}+c_{2} c_{0}\right) x^{3}}_{\text {fr } n=3}+\ldots$

$$
\begin{aligned}
& =x\left[c_{0} c_{0}+\left(c_{0} c_{1}+c_{1} c_{0}\right) x+\left(c_{0} c_{2}+c_{1} c_{1}+c_{2} c_{0} c_{0} x^{2}+\ldots\right]\right. \\
& =x[E(x)]^{n} \quad \text { since }\left(\left(\sum_{n=0} c_{n} x^{x}\right)\left(\sum_{n=1}^{n_{1} c_{1} x}\right)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} c_{i} c_{n-1}\right) x^{n}\right. \text { by seces.1.2 }
\end{aligned}
$$

$$
0=x F(x)-F(x)+1
$$

So $F(x)=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{1 \pm \sqrt{1-4 x}}{2 x}$

$$
\begin{aligned}
& \text { By def, }\left.\sum_{n=0}^{\infty} c_{n} x^{n}\right|_{x=0}=C_{0}=1 \text { "So we need } F(x) \text { to have constant term } 1 " . \\
& \begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1+\sqrt{1-4 x}}{2 x}=+\infty \\
& \begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\sqrt{1-4 x}}{2 x}=\lim _{x \rightarrow 0} \frac{-\frac{1}{2}(1-4 x)^{-\frac{1}{2}}(-4)}{2} \\
& 2 x \rightarrow 0 \text { as } x \rightarrow 0^{+}
\end{aligned} \\
&=\lim _{x \rightarrow 0} \frac{1}{\sqrt{1-4 x}}=1
\end{aligned}
\end{aligned}
$$

(3) Find an explicit formula for C_{n}.

$$
\therefore \sqrt{1-4 x}=1-2 x+\sum_{n \geqslant 2} \frac{(-1)^{n-1}(2 n-3)!!}{2^{n} n!}(-4 x)^{n}
$$

$$
=1-2 \times-\sum_{n \geqslant 2} \frac{(2 n-3)!!2^{n}}{n!} x^{n} \text { because } \begin{aligned}
& (-1)^{n-1}(-1)^{n} \\
& =-1)^{2 n-1} \\
& =-1
\end{aligned} \text { and } \frac{4^{n}}{2^{n}}=2^{n}
$$

$$
\frac{\operatorname{Rem} 2^{n}(2 n-3)!!}{n!} \frac{(n-1)!}{(n-1)!}=\frac{2}{n} \frac{(2 n-3)!!2^{n-1}(n-1)!}{(n-1)!(n-1)!}
$$

$$
=\frac{2}{n}\binom{2 n-2}{n-1}
$$

$$
\therefore \sqrt{1-4 x}=1-2 x-2 \sum_{n \geqslant 2} \frac{1}{n}\binom{2 n-2}{n-1} x^{n} .
$$

$$
F(x)=\frac{1-\sqrt{1-4 x}}{2 x}=\frac{1}{2 x}-\frac{1}{2 x}\left(x-2 x-2 \sum_{n=2}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n}\right)
$$

$$
=1+\frac{1}{x} \sum_{n=2}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n}
$$

$$
=1+\sum_{n=2}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n-1}
$$

$$
\therefore C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

$$
=1+\sum_{n=1}^{n=2} \frac{1}{n+1}\binom{2 n}{n} x^{n} \quad \begin{array}{r}
n=0,1,2,3,4,5,6,7,8, \ldots \\
1,1,2,5,14,42,132,429,1430, \ldots
\end{array}
$$

$$
=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}
$$

$$
\begin{aligned}
& \sqrt{1-4 x}=(1-4 x)^{\frac{1}{2}}=\sum_{n \geq 0}\binom{\frac{1}{2}}{n}(-4)^{n} x^{n} \text { by Binomial The Compute }\binom{\frac{1}{2}}{n} \text { : } \\
& \binom{\frac{1}{2}}{0}=1, \quad\binom{\frac{1}{2}}{1}=\frac{1}{2} \\
& \text {-If } n \geqslant 2 \text {, then }\binom{\frac{1}{2}}{n}=\frac{\frac{1}{2}\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right) \cdots\left(\frac{1}{2}-n+1\right)}{n!0}=\frac{-2 n+3}{2}
\end{aligned}
$$

