# MATH3250 COMBINATORICS SAMPLE PROBLEM SET 

MIKLÓS BÓNA (TYPED BY EMILY GUNAWAN)

Note: In this class, we will use $[n]$ to denote the set $\{1,2, \ldots, n\}$.

1. The number of all subsets (Theorem 2.4 page 27)

For all positive integers $n$, the number of all subsets of $[n]$ is $2^{n}$.
Proof (by induction). For $n=1$, the statement is true as $[1]=\{1\}$ has two subsets, the empty set, and $\{1\}$.

Now let $k$ be a positive integer, and assume that the statement is true for $n=k$. We divide the subset of $[k+1]$ into two classes: there will be those subsets that do not contain the element $k+1$, and there will be those that do. Those that do not contain $k+1$ are also subsets of $[k]$, so by the induction hypothesis their number is $2^{k}$. Those that contain $k+1$ consist of $k+1$ and a subset of $[k]$. However, that subset of $[k]$ can be any of the $2^{k}$ subsets of [ $k$ ], so the number of these subsets of $[k+1]$ is once more $2^{k}$. So altogether, $[k+1]$ has $2^{k}+2^{k}=2^{k+1}$ subsets, and the statement is proven.

