MATH3250 COMBINATORICS SAMPLE PROBLEM SET

MIKLÓS BÓNA (TYPED BY EMILY GUNAWAN)

Note: In this class, we will use [n] to denote the set $\{1, 2, \ldots, n\}$.

1. The number of all subsets (Theorem 2.4 page 27)

For all positive integers n, the number of all subsets of [n] is 2^n .

Proof (by induction). For n = 1, the statement is true as $[1] = \{1\}$ has two subsets, the empty set, and $\{1\}$.

Now let k be a positive integer, and assume that the statement is true for n = k. We divide the subset of [k + 1] into two classes: there will be those subsets that do not contain the element k + 1, and there will be those that do. Those that do not contain k + 1 are also subsets of [k], so by the induction hypothesis their number is 2^k . Those that contain k + 1 consist of k + 1 and a subset of [k]. However, that subset of [k] can be any of the 2^k subsets of [k], so the number of these subsets of [k + 1] is once more 2^k . So altogether, [k + 1] has $2^k + 2^k = 2^{k+1}$ subsets, and the statement is proven.