
Math3250 Combinatorics Week15 Final Sample

1 Lattices Sec 16.3

Given one of the following posets P , find the maximum and minimum elements (if possible) and sketch the Hasse diagram. Given
two elements in P , find the meet and join (if they exist). Be able to informally reproduce the explanation from the given source.

a. From Example 16.17, Figure 16.5

b. The poset of all positive integers ordered as usual (from Example 16.18).

c. The poset of all positive integers with partial order in which x ≤ y iff x is a divisor of y (from Example 16.20).

d. The Boolean algebra (from Example 16.19).

e. The poset of set partitions on [3] or [4] (from Example 16.34).

f. The poset of noncrossing partitions [3] or [4] (from Example 16.36).

g. The poset of integer partitions of 5, 6, or 7 (from egunawan.github.io/combinatorics/notes/week13_sec16.3lattices.

pdf).

2 Möbius function Sec 16.2 and Sec 16.3

Use Theorem 16.15 or Corollary 16.16 to compute the the values of µ on the intervals of the following poset:

a. From Example 16.17, Figure 16.5

b. The poset of all positive integers ordered as usual (from Example 16.18).

c. The poset of all positive integers with partial order in which x ≤ y iff x is a divisor of y (from Example 16.20).

d. The Boolean algebra (from Example 16.19).

e. The poset of set partitions on [3] or [4] (from Example 16.34).

3 Twelvefold way

Compute the answer to each enumeration problem below. Express your answer both in a way that has mathematical meaning
(e.g., a difference of binomial coefficients) and as a nonnegative integer. If a problem is a direct consequence of an entry in the
twelvefold way, explain which one (e.g., “this is equivalent to putting indistinct balls in distinct boxes surjectively”).

a. How many subsets of the set [12] = {1, 2, . . . , 12} contain at least one odd integer?

Solution: 212 − 26 = 4032. Explanation: There are 212 subsets of [12] and there are 26 subsets of the 6-element set
{2, 4, 6, 8, 10, 12}.

b. In how many ways can eight people be seated in a circle if two arrangements are considered the same whenever each person
has the same neighbors (not necessarily on the same side)?

Solution: 1
2 (8 − 1)! = 2520. Explanation: One person can sit first. There are 7! ways for the other seven people to fill

the remaining seven seats. But switching left and right neighbors does not change the arrangement, so we need to divide
by 2.

c. How many permutations π : [6]→ [6] satisfy π(1) 6= π(2)?

Solution: 5 · 5! (or 6!− 5!) = 600.
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d. There are four job openings and six candidates. Each job opening is filled by one of the candidates. In how many ways can
this be done?

Solution: (6)4 = 360.

e. Ten people split up into five groups of two each. In how many ways can this be done?

Solution: 9 · 7 · 5 · 3 · 1 = 945. Explain the result.

f. How many compositions of 20 use only the parts 2 and 3?

Solution:
(
7
1

)
+
(
8
4

)
+
(
9
7

)
+
(
10
10

)
= 114. Explanation: The number

(
7
1

)
counts the number of compositions which use six

parts of size 3 and one part of size 2.

g. How many partitions of 8 are there into odd parts?

Solution: Six: 71, 53, 5111, 331, 31111, 11111111.

h. In how many different ways can the letters of the word BOOKKEEPER be arranged if the three E?s cannot appear consec-
utively?

Solution:
(

10
3,2,2,1,1,1

)
−
(

8
2,2,1,1,1,1

)
. The second multinomial expression is from treating the three copies of the letter E

as one letter.

i. How many sequences (a1, a2, . . . , a12) are there consisting of four 0?s and eight 1’s if no two consecutive terms are both 0’s?

Solution:
(
8+1
4

)
= 126. This is the same as counting compositions of 12 (think of the 0 symbol as the + symbol. See

the explanation for how to count weak compositions in Chapter 5.

4 Weak compositions and OGF

a. What does it mean for a sequence (a1, a2, . . . , ak) to be a weak composition of n? 1.

b. What is the number of weak compositions of n into k parts? 2

c. Let b0 = 1, and, if n > 0, let bn be the number of weak compositions of n into 5 parts. Let B(x) =
∑∞

n=0 bnx
n be the ordinary

generating function of bn. Give an explicit formula for B(x) as a function of x.

Solution: (1− x)−5

5 Binomial Theorem and OGF

a. Prove that the ordinary generating function for the sequence cn =
(
2n
n

)
is (1− 4x)−

1
2 .

1The first definition in Section 5.1
2This number is given in the first theorem in Section 5.1.
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Solution: Use binomial theorem. See example in Bona Chapter 4.

b. Prove that
n∑

i=0

(
2i

i

)(
2(n− i)
n− i

)
= 4n.

Solution: Interpret the left-hand side of this as the coefficient of xn in the product of the OGF of cn with itself, whose
closed form expression is (1− 4x)−

1
2 (1− 4x)−

1
2 = 1

1−4x .

6 Nine vectors

Let

a1b1
c1

,

a2b2
c2

 . . . ,

a9b9
c9

 be nine vectors in Z3. Prove that at least two of these nine vectors have a sum whose coordinates

are all even integers.

Solution:

Proof. Given an integer x, let x′ = 0 if x is even and 1 if x is odd. There are eight possible sequences of

ab
c

; hence, by

the pigeonhole-principle, there two distinct i, j ∈ [9] such that

aibi
ci

 =

ajbj
cj

. Then the sum

aibi
ci

+

ajbj
cj

 =

ai + aj
bj + bj
ci + cj


of these two vectors have even coordinates.

7 RIFFRAFF

How many different ways are there to arrange the letters in the word RIFFRAFF? How many different ways are there to arrange
the letters in the word RIFFRAFF so that the two R’s are not adjacent?

Solution: The number of all arrangements of the multiset of 8 objects with 4 objects (that look like F), 2 objects (that look like R),
one I, and 1 A is

(
8

4,2,1,1

)
. The number of arrangements where the two R’s are adjacent is the same as the number of all arrangements

of the multiset of 7 objects with 4 objects (that look like F), 1 object (that looks like RR), one I, and 1 A. Subtracting the second

number from the first number we get

(
8

4, 2, 1, 1

)
−

(
7

4, 1, 1, 1

)
= 4 · 7 · 6 · 5 − 7 · 6 · 5 = 3 · 7 · 6 · 5 = 630 .

8 Binary words

(i) Let f(n) be the number of binary sequences a1, a2, . . . , an (note that this means that each ai is 0 or 1). Note that f(0) = 1
because there is one binary sequence of length 0, empty sequence. Find a simple formula for f(n).

Solution:

Answer. For each ai, there are two options, so f(n) = 2n . Read the first theorem of Sec 3.2 (Bona) and its proof.

(ii) let g(n) be the number of binary sequences a1, a2, . . . , an with no two consecutive 1’s. Find a simple formula for g(n).
Note that g(0) = 1 because there is one binary sequence of length 0, empty sequence. Express your answer in terms of the
Fibonacci numbers (given by F1 = F2 = 1, and Fn+1 = Fn + Fn−1).
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Solution: We have g(0) = 1, g(1) = 2, g(2) = 3, suggesting that perhaps g(n) = Fn+2.

Proof. To prove that g(n) = Fn+2, we just need to show that g(n + 1) = g(n) + g(n − 1) for n ≥ 2, since we already
checked the initial conditions. If a sequence a1, . . . , an+1 with no two consecutive 1’s ends with an+1 = 0, then a1, . . . , an
can be any sequence of length n with no two consecutive 1’s, of which there are g(n). On the other hand, if an+1 = 1,
then we must have an = 0, and there are g(n− 1) choices for a1, . . . , an−1. Thus g(n+ 1) = g(n) + g(n− 1).

9 Compositions where each part is divisible by three

Let C be the set of compositions of 24 (into any number of parts) such that each part is divisible by 3. How many elements does
C have?

Solution:

Answer. The map C to the set of all compositions of 8 defined by dividing each part of a composition in C by three is a
bijection. Since the number of compositions of n is the same as the number of all subsets of [n − 1] (which is 2n−1), the
number of all compositions of 8 is 28−1. So the number of elements in C is 28−1.

10 Bijections

Let n ≥ 4. How many bijections π : [n] → [n] satisfy π(1) = 2, π(2) 6= 3, π(2) 6= 4, and π(3) 6= 4? Give a simple formula not
involving summation symbols.

(Afterwards, you should check that your formula works for n = 4).

Solution:

Answer. There is only one choice for π(1). There are then n− 3 choices for π(2) (anything other than 2, 3, and 4). There
are then n − 3 choices for π(3) (anything other than 2, π(2), and 4, which are all different). There are then n − 3 choices

for π(4), n− 4 choices for π(5), etc. This gives (n− 3)3(n− 4)! = (n− 2)2(n− 3)! choices in all. (For n = 4, the formula

gives 1, and the only such bijection is the map sending 1 to 2, 2 to 1, and fixing both 3 and 4 pointwise.

11 Finding an identity

Find a simple formula (no summation symbols) for

f(n) =

n∑
k=0

(
k

2

)(
n

k

)
.

Solution:

Answer 1. The right-hand side counts the number of ways to choose a subset S of any size from [n], then choose a 2-element
subset T from S. But we could get the same result by choosing T first in

(
n
2

)
ways, then choose an arbitrary subset of the

remaining n− 2 elements in 2n−2 ways, which gives f(n) =
(
n
2

)
2n−2.

Answer 2. Take the binomial expansion (1 + x)n =
∑n

k=0 x
k, differentiate twice and then divide both sides by 2. Then set

x = 1 to get (
n

2

)
2n−2 =

n∑
k=0

(
k

2

)(
n

k

)
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12 Integer partitions with no parts equal to 1

For n ≥ 2, let f(n) be the number of (integer) partitions of n with no parts equal to 1. For example, f(1) = 0, f(2) = 1 because
the only such partition is (2), f(3) = 1 counts the partition (3), f(4) = 2 counts the partitions (4) and (2, 2) f(5) = 2 counts
the partitions (5) and (3, 2).

Express f(n) in terms of the partition function, i.e. in terms of the numbers p(1), p(2), p(3), . . . , p(k) where p(k) is the number
of partitions of k. Your formula should be simple, containing no summation symbols.

Solution: We claim that f(n) = p(n)− p(n− 1). To obtain a partition of the integer n with at least one part equal to 1,
take a partition λ of n− 1 and adjoin a new part equal to 1. Thus there are p(n− 1) with (at least) one part equal to 1, so
f(n) = p(n) = p(n− 1).

13 Enumerating all subsets

Given a positive integer n, what is the the number of all subsets of [n]?

a. Prove by induction on n.

Solution: The answer is 2n.

Proof (by induction) from Theorem 2.4 page 27 of Bona. For n = 1, the statement is true as [1] = {1} has two subsets,
the empty set, and {1}.
Now let k be a positive integer, and assume that the statement is true for n = k. We divide the subset of [k+ 1] into two
classes: there will be those subsets that do not contain the element k + 1, and there will be those that do. Those that
do not contain k + 1 are also subsets of [k], so by the induction hypothesis their number is 2k. Those that contain k + 1
consist of k+ 1 and a subset of [k]. However, that subset of [k] can be any of the 2k subsets of [k], so the number of these
subsets of [k + 1] is once more 2k. So altogether, [k + 1] has 2k + 2k = 2k+1 subsets, and the statement is proven.

b. Prove by another method.

Solution: There is a proof using a bijection in Section 3.2 and there is a proof in Section 4.1 using the binomial theorem.

14 A sequence

Let the sequence {an} be defined by the relations a0 = 1, and let

an+1 = 2(a0 + a1 + · · ·+ an)

for n ≥ 0. Prove that an = 2 · 3n−1 for n ≥ 1.

Solution:

Proof. We prove this by strong induction on n. Since 2(a0) = 2(1) = 2 · 31−1, the initial case (for n = 1) is verified. Now let
us assume that the statement is true for all positive integers that are less than or equal to n. Then, we have

an+1 = 2(a0 + a1 + a2 + · · ·+ an) by the recurrence relation

= 2a0 + 2(a1 + a2 + · · ·+ an)

= 2 + 2(2 · 1 + 2 · 3 + · · ·+ 2 · 3n−1) by the induction hypothesis

= 2 + 4(1 + 3 + · · ·+ 3n−1)

= 2 + 4

(
3n − 1

2

)
since the series is a geometric series

= 2 + 2(3n − 1)

= 2 · 3n.

This proves that our explicit formula is correct for n+ 1, and the proof is complete.
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