1. Let $a_0 = 1, a_1 = 4$ and $a_{n+2} = 8a_{n+1} - 16a_n$ if $n \ge 0$.

(a) Use the recurrence relation to find an explicit formula for the ordinary generating function of the sequence $\{a_n\}_{n\geq 0}$.

Solution: From Supplementary Chapter 8 Exercise 26. Good for exam because no partial fraction computation is required. (If I want to change the numbers to p, q, r, I can follow Exercise 28.)

Below is copied from Bona 4th ed. Let $A(x) = \sum_{k\geq 0} a_n x^n$. Multiply both sides of the defining recurrence relation by x^{n+2} and sum over $k\geq 0$ to get

$$A(x) - 4x - 1 = 8x(A(x) - 1) - 16x^2A(x),$$

$$A(x) = \frac{1 - 4x}{1 - 8x + 16x^2} = \frac{-1 + 4x}{-1 + 8x - 16x^2} = \frac{1}{1 - 4x}.$$

(b) Use the previous part to compute an explicit formula for a_n for $n \ge 0$.

Solution: Therefore, $a_n = 4^n$ for $n \ge 2$.

2. For $n \ge 0$, let p(n) denote the number of partitions of the integer n. Recall the fact (which you don't need to prove) that $\sum_{n=0}^{\infty} p(n) x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}$.

Recall also that the ordinary generating function for the number of partitions of n for which no part is divisible by 3 is equal to the number of partitions of n for which no part appears more than twice, $\prod \frac{1-x^{3i}}{x^{3i}} = \prod (1+x^i+x^{i2}).$

$$\prod_{i \ge 1} \frac{1-x}{1-x^i} = \prod_{i \ge 1} (1+x^i +$$

- (a) Let $a_0 = 1$, and let a_n be the number of partitions of n for which no part is divisible by 3 and no part appears more than twice.
 - i. Write down all such partitions for n = 5

Solution: There are three

ii. Write down a formula (not as an infinite series) for the ordinary generating function for a_n . Briefly justify your formula (but you don't need to write a complete proof).

iii. Does the coefficient for x^5 for your generating function matches the number of partitions you wrote down in the first part?

- (b) Let $b_0 = 1$ and let b_n be the number of partitions of n for which no part is bigger than 3.
 - i. Write down all such partitions for n = 5

Solution: There are five: (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1).

ii. Write down a formula (not as an infinite series) for the ordinary generating function for b_n . Briefly justify your formula (but you don't need to write a complete proof).

Solution:	$\prod \frac{1}{(1-1)(1-2)(1-2)}$
	$\prod_{i\geq 1} (1-x)(1-x^2)(1-x^3)$

iii. Does the coefficient for x^5 for your generating function matches the number of partitions you wrote down in the first part?

(c) Is a_n and b_n the same sequence? Prove your answer.

3. (a) Let $a_0 = 1, a_1 = 1$, and let

$$a_n = n \ a_{n-1} + n \ (n-1) \ a_{n-2}$$
 for $n \ge 2$.

Find an explicit formula (as a function of x, not involving an infinite sum) for the exponential generating function $A(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$.

Solution:

$$A - x - 1 = x(A - 1) + x^{2}A$$
$$A(x) = \frac{1}{1 - x - x^{2}}$$

(b) You have seen this function before as an *ordinary* generating function for a different sequence $\{b_n\}_{n=0}^{\infty}$. Give an explicit formula for b_n .

Solution:

See the "child walks up a stairway" problem in chapter 8 and the answer key in the back of the chapter.

(c) Give a recurrence relation for the mystery sequence b_n .

Solution: $b_n = b_{n-1} + b_{n-2}$

4. Recall that
$$\binom{m}{0} := 1$$
, $\binom{m}{1} = m$, and $\binom{m}{k} := \frac{m(m-1)\dots(m-k+1)}{k!}$.

(a) Prove that

$$\frac{1}{\sqrt{1-4x}} = \sum_{n \ge 0} \binom{2n}{n} x^n.$$

Solution: From Exercise 27 Bona 4th ed (answer and computation is in book).

(b) Compute the power series of $(1-x)^{-5}$ using the Binomial Theorem.

- (c) Let $a_0 = 1$ and let a_n be the number of weak compositions into 5 parts. Recall that the definition of weak compositions and a formula are in the first two pages of Section 5.1. Memorize or practice writing the proof for the formula.
- (d) Give an explicit formula (as a function of x, without an infinite sum) of the ordinary generating function $\sum_{n=0}^{\infty} a_n x^n$. ¹ Justify your answer.

Solution: The answer is $(1-x)^{-5}$ because the coefficient for x^n from part (b) is equal to the formula for a_n in part (c).

(e) For a positive integer m, compute the power series of $(1 - x)^{-m}$ using the Binomial Theorem. What is the ordinary generating function for the number of weak compositions into m parts?

¹Hint: Look at part (b).

5. Submit the optional Problem 3 from Week 13 Problems.

Let a_n be the number of antichains of the poset P_n whose Hasse diagram is

$$\begin{array}{c} 2\\ 1\\ 1\\ \end{array} \underbrace{\searrow}_{3} \underbrace{\bigwedge}_{5} \underbrace{n-1}_{n-2} \underbrace{n}_{\text{if } n \text{ is odd and}} \\ 1\\ 1\\ \end{array} \underbrace{\searrow}_{3} \underbrace{\bigwedge}_{5} \underbrace{n-2}_{n-1} \underbrace{n}_{\text{if } n \text{ is odd and}} \\ 1\\ 1\\ \end{array} \underbrace{\searrow}_{3} \underbrace{\bigwedge}_{5} \underbrace{n-2}_{n-1} \underbrace{n}_{\text{if } n \text{ is even.}} \\ \end{array}$$

The recurrence relation for a_n is given in the answer key of the previous problem set.

Let P'_4 and P'_5 be posets whose Hasse diagrams are shown below.

Let J_4 (resp. J_5) be the set of all order filters of the poset P'_4 (resp. P'_5), and define a partial order by inclusion, that is, $F_1 \leq F_2$ iff $F_1 \subset F_2$. Recall that there are 7 and 10 order filters (respectively) in J_4 and J_5 , including the empty set.

For $n \ge 4$, let b_n be the number of the order filters of the *n*-element poset P'_n whose Hasse diagram is

a.) **Prove** that, if n is even and at least 4, then

$$b_n = a_{n-3} + a_{n-1} \tag{1}$$

Solution:

We have proven that the number of antichains of a poset is equal to the number of order filters of the same poset, hence b_n is the number of antichains of P'_n . To prove

 $b_n = 2a_{n-3} + a_{n-2}$ for all even $n \ge 4$,

suppose that $n \ge 4$ is even, and let A be an antichain of P'_n . First, suppose $n \in A$. Then $1 \notin A$ and $n-1 \notin A$ because both 1 and n-1 are comparable to n. However, none of the numbers $2, \ldots, n-2$ is comparable to n, and there are a_{n-3} ways to pick an antichain of the subposet $\{2, \ldots, n-2\}$ of P_n . Next, suppose $n \notin A$. If $1 \in A$, then $2 \notin A$ and $n \notin A$ because both 2 and n are comparable to 1. However, none of the numbers $3, \ldots, n-1$ are comparable to 1, and the number of options is equivalent to counting the number of antichains of the poset P_{n-3} , which is a_{n-3} . If $1, n \notin A$, then the elements that may go in A are $2, 3, \ldots, n-1$, so the number of options is the same as counting the number of antichains of a poset isomorphic to the poset P_{n-2} , which is a_{n-2} .

b.) **Prove** that, if *n* is even, then b_n is a Lucas number.²

Solution: Let ℓ_n be defined by $\ell_2 = 3$, $\ell_3 = 4$, and $\ell_n = 2a_{n-3} + a_{n-2}$ for $n \ge 4$. Then $\ell_{n+1} + \ell_n = (2a_{n-2} + a_{n-1}) + (2a_{n-3} + a_{n-2})$ $= a_{n-2} + a_{n-2} + a_{n-1} + a_{n-3} + a_{n-3} + a_{n-2}$ $= a_{n-2} + a_n + a_{n-3} + a_{n-1} \quad \text{since } a_n \text{ are the Fibonacci numbers}$ $= a_{n-1} + a_{n-1} + a_n$ $= 2a_{n-1} + a_n$ $= \ell_{n+2}.$

Thus each ℓ_n is a Lucas number. Since $b_n = \ell_n$ whenever n is even, the statement follows.

c.) **Prove** that, if n is odd, then $b_n = 2 a_{n-2}$.

Solution:

^{2} Hint: Use equation (1) and apply arithmetic.

Extra credit

Write a problem using techniques and concepts related to set partition, poset or generating function. Write a brief, correct solution key.

Extra credit

Describe an interesting theorem or idea from this class since the first test.