1. Let $a_{0}=1, a_{1}=4$ and $a_{n+2}=8 a_{n+1}-16 a_{n}$ if $n \geq 0$.
(a) Use the recurrence relation to find an explicit formula for the ordinary generating function of the sequence $\left\{a_{n}\right\}_{n \geq 0}$.

Solution: From Supplementary Chapter 8 Exercise 26 . Good for exam because no partial fraction computation is required. (If I want to change the numbers to p, q, r, I can follow Exercise 28.)
Below is copied from Bona 4th ed. Let $A(x)=\sum_{k \geq 0} a_{n} x^{n}$. Multiply both sides of the defining recurrence relation by x^{n+2} and sum over $k \geq 0$ to get

$$
\begin{aligned}
A(x)-4 x-1 & =8 x(A(x)-1)-16 x^{2} A(x), \\
A(x) & =\frac{1-4 x}{1-8 x+16 x^{2}}=\frac{-1+4 x}{-1+8 x-16 x^{2}}=\frac{1}{1-4 x} .
\end{aligned}
$$

(b) Use the previous part to compute an explicit formula for a_{n} for $n \geq 0$.

Solution: Therefore, $a_{n}=4^{n}$ for $n \geq 2$.
2. For $n \geq 0$, let $p(n)$ denote the number of partitions of the integer n. Recall the fact (which you don't need to prove) that $\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{k=1}^{\infty} \frac{1}{1-x^{k}}$.
Recall also that the ordinary generating function for the number of partitions of n for which no part is divisible by 3 is equal to the number of partitions of n for which no part appears more than twice,
$\prod_{i \geq 1} \frac{1-x^{3 i}}{1-x^{i}}=\prod_{i \geq 1}\left(1+x^{i}+x^{i 2}\right)$.
(a) Let $a_{0}=1$, and let a_{n} be the number of partitions of n for which no part is divisible by 3 and no part appears more than twice.
i. Write down all such partitions for $n=5$

Solution: There are three
ii. Write down a formula (not as an infinite series) for the ordinary generating function for a_{n}. Briefly justify your formula (but you don't need to write a complete proof).

Solution:

$$
\prod_{i \text { does not divide } 3}\left(1+x^{i}+x^{i 2}\right)
$$

iii. Does the coefficient for x^{5} for your generating function matches the number of partitions you wrote down in the first part?
(b) Let $b_{0}=1$ and let b_{n} be the number of partitions of n for which no part is bigger than 3 .
i. Write down all such partitions for $n=5$

Solution: There are five: $(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)$.
ii. Write down a formula (not as an infinite series) for the ordinary generating function for b_{n}. Briefly justify your formula (but you don't need to write a complete proof).

Solution:

$$
\prod_{i \geq 1} \frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)}
$$

iii. Does the coefficient for x^{5} for your generating function matches the number of partitions you wrote down in the first part?
(c) Is a_{n} and b_{n} the same sequence? Prove your answer.
3. (a) Let $a_{0}=1, a_{1}=1$, and let

$$
a_{n}=n a_{n-1}+n(n-1) a_{n-2} \text { for } n \geq 2 .
$$

Find an explicit formula (as a function of x, not involving an infinite sum) for the exponential generating function $A(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}$.

Solution:

$$
\begin{gathered}
A-x-1=x(A-1)+x^{2} A \\
A(x)=\frac{1}{1-x-x^{2}}
\end{gathered}
$$

(b) You have seen this function before as an ordinary generating function for a different sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$. Give an explicit formula for b_{n}.

Solution:

See the "child walks up a stairway" problem in chapter 8 and the answer key in the back of the chapter.
(c) Give a recurrence relation for the mystery sequence b_{n}.

Solution: $b_{n}=b_{n-1}+b_{n-2}$
4. Recall that $\binom{m}{0}:=1,\binom{m}{1}=m$, and $\binom{m}{k}:=\frac{m(m-1) \ldots(m-k+1)}{k!}$.
(a) Prove that

$$
\frac{1}{\sqrt{1-4 x}}=\sum_{n \geq 0}\binom{2 n}{n} x^{n} .
$$

Solution: From Exercise 27 Bona 4th ed (answer and computation is in book).
(b) Compute the power series of $(1-x)^{-5}$ using the Binomial Theorem.
(c) Let $a_{0}=1$ and let a_{n} be the number of weak compositions into 5 parts. Recall that the definition of weak compositions and a formula are in the first two pages of Section 5.1. Memorize or practice writing the proof for the formula.
(d) Give an explicit formula (as a function of x, without an infinite sum) of the ordinary generating function $\sum_{n=0}^{\infty} a_{n} x^{n}$. ${ }^{1}$ Justify your answer.

Solution: The answer is $(1-x)^{-5}$ because the coefficient for x^{n} from part (b) is equal to the formula for a_{n} in part (c).
(e) For a positive integer m, compute the power series of $(1-x)^{-m}$ using the Binomial Theorem. What is the ordinary generating function for the number of weak compositions into m parts?

[^0]5. Submit the optional Problem 3 from Week 13 Problems.

Let a_{n} be the number of antichains of the poset P_{n} whose Hasse diagram is

if n is odd and

The recurrence relation for a_{n} is given in the answer key of the previous problem set.

Let P_{4}^{\prime} and P_{5}^{\prime} be posets whose Hasse diagrams are shown below.

Let $J_{4}\left(\right.$ resp. $\left.J_{5}\right)$ be the set of all order filters of the poset $P_{4}^{\prime}\left(\right.$ resp. $\left.P_{5}^{\prime}\right)$, and define a partial order by inclusion, that is, $F_{1} \leq F_{2}$ iff $F_{1} \subset F_{2}$. Recall that there are 7 and 10 order filters (respectively) in J_{4} and J_{5}, including the empty set.

For $n \geq 4$, let b_{n} be the number of the order filters of the n-element poset P_{n}^{\prime} whose Hasse diagram is

$$
\text { if } n \text { is odd and }
$$

$$
\text { if } n \text { is even. }
$$

a.) Prove that, if n is even and at least 4, then

$$
\begin{equation*}
b_{n}=a_{n-3}+a_{n-1} \tag{1}
\end{equation*}
$$

Solution:

We have proven that the number of antichains of a poset is equal to the number of order filters of the same poset, hence b_{n} is the number of antichains of P_{n}^{\prime}. To prove

$$
b_{n}=2 a_{n-3}+a_{n-2} \text { for all even } n \geq 4
$$

suppose that $n \geq 4$ is even, and let A be an antichain of P_{n}^{\prime}.
First, suppose $n \in A$. Then $1 \notin A$ and $n-1 \notin A$ because both 1 and $n-1$ are comparable to n. However, none of the numbers $2, \ldots, n-2$ is comparable to n, and there are a_{n-3} ways to pick an antichain of the subposet $\{2, \ldots, n-2\}$ of P_{n}.
Next, suppose $n \notin A$. If $1 \in A$, then $2 \notin A$ and $n \notin A$ because both 2 and n are comparable to 1 . However, none of the numbers $3, \ldots, n-1$ are comparable to 1 , and the number of options is equivalent to counting the number of antichains of the poset P_{n-3}, which is a_{n-3}. If $1, n \notin A$, then the elements that may go in A are $2,3, \ldots, n-1$, so the number of options is the same as counting the number of antichains of a poset isomorphic to the poset P_{n-2}, which is a_{n-2}.
b.) Prove that, if n is even, then b_{n} is a Lucas number. ${ }^{2}$

Solution: Let ℓ_{n} be defined by $\ell_{2}=3, \ell_{3}=4$, and $\ell_{n}=2 a_{n-3}+a_{n-2}$ for $n \geq 4$. Then

$$
\begin{aligned}
\ell_{n+1}+\ell_{n} & =\left(2 a_{n-2}+a_{n-1}\right)+\left(2 a_{n-3}+a_{n-2}\right) \\
& =a_{n-2}+a_{n-2}+a_{n-1}+a_{n-3}+a_{n-3}+a_{n-2} \\
& =a_{n-2}+a_{n}+a_{n-3}+a_{n-1} \quad \text { since } a_{n} \text { are the Fibonacci numbers } \\
& =a_{n-1}+a_{n-1}+a_{n} \\
& =2 a_{n-1}+a_{n} \\
& =\ell_{n+2} .
\end{aligned}
$$

Thus each ℓ_{n} is a Lucas number. Since $b_{n}=\ell_{n}$ whenever n is even, the statement follows.
c.) Prove that, if n is odd, then $b_{n}=2 a_{n-2}$.

Solution:

[^1]

Since there is a bijection from $\{$ order filters of $P\} \rightarrow\{a n t i c h a i n s$ of $P\}$, we can consider antichains of P.
There are two possible cases for any antichain of P :
Case 1: n is in the antichain
Any antichair. of P that includes n cannot also include $n-1$ or 1 , because n is comparable to both 1 and $n-1$. Thus, we form an antichain from a poses with the structure above with $n-3$ elements, of which there are exactly a_{n-3}

Gntichains.

Case 2: n is not in the antichain
If n is not in the antichain, then we consider antichains formed from the posed with the same structure as P with $n-1$ elements.
We have two possible sub-cases:

- Case A: 1 is in the antichain 2 or $n-1$ in the antichain because 1 is coxlparable If 1 is in the antichain, we cant worm an antichain from a posset with the structure above with $n-4$ elements, of which there are exactly a_{n-4} antichains.
- Case B: 1 is not in the antichain

If 1 is not in the antichain, then we form an antichain from a posed with the same structure above with $n-2$ elements of which there are exactly a_{n-2} antichains.

Combining all the cases, we have $b_{n}=a_{n-2}+\underbrace{a_{n-3}+a_{n-4}}_{a_{n-2}}=2 a_{n-2}$.

Extra credit

Write a problem using techniques and concepts related to set partition, pose or generating function. Write a brief, correct solution key.

Extra credit

Describe an interesting theorem or idea from this class since the first test.

[^0]: ${ }^{1}$ Hint: Look at part (b).

[^1]: ${ }^{2}$ Hint: Use equation (1) and apply arithmetic.

