1. Let $a_{0}=1, a_{1}=4$ and $a_{n+2}=8 a_{n+1}-16 a_{n}$ if $n \geq 0$.
(a) Use the recurrence relation to find an explicit formula for the ordinary generating function of the sequence $\left\{a_{n}\right\}_{n \geq 0}$.
(b) Use the previous part to compute an explicit formula for a_{n} for $n \geq 0$.
2. For $n \geq 0$, let $p(n)$ denote the number of partitions of the integer n. Recall the fact (which you don't need to prove) that $\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{k=1}^{\infty} \frac{1}{1-x^{k}}$.
Recall also that the ordinary generating function for the number of partitions of n for which no part is divisible by 3 is equal to the number of partitions of n for which no part appears more than twice,
$\prod_{i \geq 1} \frac{1-x^{3 i}}{1-x^{i}}=\prod_{i \geq 1}\left(1+x^{i}+x^{i 2}\right)$.
(a) Let $a_{0}=1$, and let a_{n} be the number of partitions of n for which no part is divisible by 3 and no part appears more than twice.
i. Write down all such partitions for $n=5$
ii. Write down a formula (not as an infinite series) for the ordinary generating function for a_{n}. Briefly justify your formula (but you don't need to write a complete proof).
iii. Does the coefficient for x^{5} for your generating function matches the number of partitions you wrote down in the first part?
(b) Let $b_{0}=1$ and let b_{n} be the number of partitions of n for which no part is bigger than 3 .
i. Write down all such partitions for $n=5$
ii. Write down a formula (not as an infinite series) for the ordinary generating function for b_{n}. Briefly justify your formula (but you don't need to write a complete proof).
iii. Does the coefficient for x^{5} for your generating function matches the number of partitions you wrote down in the first part?
(c) Is a_{n} and b_{n} the same sequence? Prove your answer.
3. (a) Let $a_{0}=1, a_{1}=1$, and let

$$
a_{n}=n a_{n-1}+n(n-1) a_{n-2} \quad \text { for } n \geq 2 .
$$

Find an explicit formula (as a function of x, not involving an infinite sum) for the exponential generating function $A(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}$.
(b) You have seen this function before as an ordinary generating function for a different sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$. Give an explicit formula for b_{n}.
(c) Give a recurrence relation for the mystery sequence b_{n}.
4. Recall that $\binom{m}{0}:=1,\binom{m}{1}=m$, and $\binom{m}{k}:=\frac{m(m-1) \ldots(m-k+1)}{k!}$.
(a) Prove that

$$
\frac{1}{\sqrt{1-4 x}}=\sum_{n \geq 0}\binom{2 n}{n} x^{n} .
$$

(b) Compute the power series of $(1-x)^{-5}$ using the Binomial Theorem.
(c) Let $a_{0}=1$ and let a_{n} be the number of weak compositions into 5 parts. Recall that the definition of weak compositions and a formula are in the first two pages of Section 5.1. Memorize or practice writing the proof for the formula.
(d) Give an explicit formula (as a function of x, without an infinite sum) of the ordinary generating function $\sum_{n=0}^{\infty} a_{n} x^{n} .{ }^{1}$ Justify your answer.
(e) For a positive integer m, compute the power series of $(1-x)^{-m}$ using the Binomial Theorem. What is the ordinary generating function for the number of weak compositions into m parts?

[^0]5. Submit the optional Problem 3 from Week 13 Problems.

Let a_{n} be the number of antichains of the poset P_{n} whose Hasse diagram is

if n is odd and

The recurrence relation for a_{n} is given in the answer key of the previous problem set.

Let P_{4}^{\prime} and P_{5}^{\prime} be posets whose Hasse diagrams are shown below.

Let $J_{4}\left(\right.$ resp. $\left.J_{5}\right)$ be the set of all order filters of the poset $P_{4}^{\prime}\left(\right.$ resp. $\left.P_{5}^{\prime}\right)$, and define a partial order by inclusion, that is, $F_{1} \leq F_{2}$ iff $F_{1} \subset F_{2}$. Recall that there are 7 and 10 order filters (respectively) in J_{4} and J_{5}, including the empty set.

For $n \geq 4$, let b_{n} be the number of the order filters of the n-element poset P_{n}^{\prime} whose Hasse diagram is

a.) Prove that, if n is even and at least 4, then

$$
\begin{equation*}
b_{n}=a_{n-3}+a_{n-1} \tag{1}
\end{equation*}
$$

b.) Prove that, if n is even, then b_{n} is a Lucas number. ${ }^{2}$
c.) Prove that, if n is odd, then $b_{n}=2 a_{n-2}$.

[^1]
Extra credit

Write a problem using techniques and concepts related to set partition, poset or generating function. Write a brief, correct solution key.

Extra credit

Describe an interesting theorem or idea from this class since the first test.

[^0]: ${ }^{1}$ Hint: Look at part (b).

[^1]: ${ }^{2}$ Hint: Use equation (1) and apply arithmetic.

