- 1. Let $a_0 = 1, a_1 = 4$ and $a_{n+2} = 8a_{n+1} 16a_n$ if $n \ge 0$.
 - (a) Use the recurrence relation to find an explicit formula for the ordinary generating function of the sequence $\{a_n\}_{n\geq 0}$.

(b) Use the previous part to compute an explicit formula for a_n for $n \geq 0$.

2. For $n \ge 0$, let p(n) denote the number of partitions of the integer n. Recall the fact (which you don't need to prove) that $\sum_{n=0}^{\infty} p(n) x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}$.

Recall also that the ordinary generating function for the number of partitions of n for which no part is divisible by 3 is equal to the number of partitions of n for which no part appears more than twice,

$$\prod_{i \ge 1} \frac{1 - x^{3i}}{1 - x^i} = \prod_{i \ge 1} (1 + x^i + x^{i2}).$$

- (a) Let $a_0 = 1$, and let a_n be the number of partitions of n for which no part is divisible by 3 and no part appears more than twice.
 - i. Write down all such partitions for n=5

ii. Write down a formula (not as an infinite series) for the ordinary generating function for a_n . Briefly justify your formula (but you don't need to write a complete proof).

iii. Does the coefficient for x^5 for your generating function matches the number of partitions you wrote down in the first part?

- (b) Let $b_0 = 1$ and let b_n be the number of partitions of n for which no part is bigger than 3.
 - i. Write down all such partitions for n=5

ii. Write down a formula (not as an infinite series) for the ordinary generating function for b_n . Briefly justify your formula (but you don't need to write a complete proof).

iii. Does the coefficient for x^5 for your generating function matches the number of partitions you wrote down in the first part?

(c) Is a_n and b_n the same sequence? Prove your answer.

3. (a) Let $a_0 = 1$, $a_1 = 1$, and let

$$a_n = n \ a_{n-1} + n \ (n-1) \ a_{n-2}$$
 for $n \ge 2$.

Find an explicit formula (as a function of x, not involving an infinite sum) for the exponential generating function $A(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$.

(b) You have seen this function before as an *ordinary* generating function for a different sequence $\{b_n\}_{n=0}^{\infty}$. Give an explicit formula for b_n .

(c) Give a recurrence relation for the mystery sequence b_n .

- 4. Recall that $\binom{m}{0} := 1$, $\binom{m}{1} = m$, and $\binom{m}{k} := \frac{m(m-1)\dots(m-k+1)}{k!}$.
 - (a) Prove that

$$\frac{1}{\sqrt{1-4x}} = \sum_{n \ge 0} \binom{2n}{n} x^n.$$

(b) Compute the power series of $(1-x)^{-5}$ using the Binomial Theorem.

(c) Let $a_0 = 1$ and let a_n be the number of weak compositions into 5 parts. Recall that the definition of weak compositions and a formula are in the first two pages of Section 5.1. Memorize or practice writing the proof for the formula.

(d) Give an explicit formula (as a function of x, without an infinite sum) of the ordinary generating function $\sum_{n=0}^{\infty} a_n x^n$. I Justify your answer.

(e) For a positive integer m, compute the power series of $(1-x)^{-m}$ using the Binomial Theorem. What is the ordinary generating function for the number of weak compositions into m parts?

¹Hint: Look at part (b).

5. Submit the optional Problem 3 from Week 13 Problems.

Let a_n be the number of antichains of the poset P_n whose Hasse diagram is

The recurrence relation for a_n is given in the answer key of the previous problem set.

Let P'_4 and P'_5 be posets whose Hasse diagrams are shown below.

Let J_4 (resp. J_5) be the set of all order filters of the poset P_4' (resp. P_5'), and define a partial order by inclusion, that is, $F_1 \leq F_2$ iff $F_1 \subset F_2$. Recall that there are 7 and 10 order filters (respectively) in J_4 and J_5 , including the empty set.

For $n \geq 4$, let b_n be the number of the order filters of the *n*-element poset P'_n whose Hasse diagram is

if n is odd and

a.) **Prove** that, if n is even and at least 4, then

$$b_n = a_{n-3} + a_{n-1} \tag{1}$$

- b.) **Prove** that, if n is even, then b_n is a Lucas number. ²
- c.) **Prove** that, if n is odd, then $b_n = 2$ a_{n-2} .

² Hint: Use equation (1) and apply arithmetic.

Extra credit

Write a problem using techniques and concepts related to set partition, poset or generating function. Write a brief, correct solution key.

Extra credit

Describe an interesting theorem or idea from this class since the first test.