1 Lattice

- a. i. Write down and memorize the definition of a lattice. ¹
 - ii. An example of a poset that is not a lattice is given in Sec 16.3. Find a different (connected) poset from this homework or from the book (from Sec 16.1-16.2 only) which is *not* a lattice, and explain why it fails to be a lattice.
 - iii. Describe or draw the Hasse diagram of a poset which is a lattice. Choose a poset which is not a chain and has more than 5 elements. ²
- b. i. Give a counterexample to the following statement³:

If L is a lattice and $x \leq z$, then $x \vee (y \wedge z) = (x \vee y) \wedge z$ for all $y \in L$.

Solution: A poset having this property is called *modular*. See Problem 11 from Bona (3rd and 4th edition).

c. i. Give a counterexample to the following statement⁴:

If L is a lattice, then $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for all $x, y, z \in L$.

ii. Give one lattice⁵ where $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for all x, y, z in this lattice.

2 Distributive lattice of order filters

Definition. We say that a lattice L is *distributive* if $x \land (y \lor z) = (x \land y) \lor (x \land z)$ for all $x, y, z \in L$.

Let P be a finite poset. Consider a new poset $J(P) := \{ \text{ order filters of } P \}$ ordered by inclusion, that is, $F_1 \leq F_2$ iff $F_1 \subset F_2$.

 $^{^{1}}$ Sec 16.3, page 431

²Several examples are spelled out in Sec 16.3.

³Hint: A smallest counterexample is a 5-element poset. You can find a counterexample in Chapter 16.

⁴Hint: A smallest counterexample is a 5-element poset. You can find a counterexample in Chapter 16.

⁵Look for a small example in Chapter 16

- a.) **Prove** that J(P) is a lattice.
- b.) **Prove** that J(P) is a *distributive* lattice.

Solution:

(a.) To prove that J(P) is a lattice it is enough to show that any two elements F_1 and F_2 of J(P) have a minimum common upper bound and a maximum common lower bound.

Let F and F' be two order ideals of P. Then $F \cap F'$ and $F \cup F'$ are also order filters of P. The filter $F \cap F'$ is larger than any other filter contained in both F and F', so it is the maximum common lower bound of F and F'. The filter $F \cup F'$ is smaller than any other filter containing both F and F', so it is the minimum common upper bound of F and F'.

(b.) As explained in the proof of part (a), $F \wedge F' = F \cap F'$ and $F \vee F' = F \cup F'$ for all $F, F' \in J(P)$.

To prove that the lattice J(P) is distributive, let x, y, z be filters of P. (Our goal is to show that $x \land (y \lor z) = (x \land y) \lor (x \land z)$.) Then

 $\begin{aligned} x \wedge (y \lor z) &= x \cap (y \cup z) \\ &= (x \cap y) \cup (x \cap z) \text{ as proven in your intro proofs class} \\ &= (x \wedge y) \lor (x \wedge z). \end{aligned}$

c.) Optional: Consider the set of all antichains of P. Define a partial order on this set so that it is a distributive lattice. ⁶

⁶See the previous problem set, where you gave a bijection between antichains and order filters

3 OPTIONAL: Counting filters

Let a_n be the number of antichains of the poset P_n whose Hasse diagram is

$$\begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \end{array} \xrightarrow{4}_{3} \begin{array}{c} n-1 \\ 5 \\ n-2 \end{array} \xrightarrow{n}_{\text{if } n \text{ is odd and}} \end{array} \begin{array}{c} 2 \\ 1 \\ 1 \\ 3 \\ 5 \end{array} \xrightarrow{4}_{5} \begin{array}{c} n-2 \\ n-1 \end{array} \xrightarrow{n}_{\text{if } n \text{ is even.}} \end{array}$$

The recurrence relation for a_n is given in the answer key of the previous problem set.

Let P'_4 and P'_5 be posets whose Hasse diagrams are shown below.

Let J_4 (resp. J_5) be the set of all order filters of the poset P'_4 (resp. P'_5), and define a partial order by inclusion, that is, $F_1 \leq F_2$ iff $F_1 \subset F_2$. Recall that there are 7 and 10 order filters (respectively) in J_4 and J_5 , including the empty set.

For $n \ge 4$, let b_n be the number of the order filters of the *n*-element poset P'_n whose Hasse diagram is

a.) **Prove** that, if n is even, then

$$b_n = a_{n-3} + a_{n-1}$$
 for all $n \ge 4$, (1)

- b.) **Prove** that, if n is even, then b_n is a Lucas number.⁷
- c.) **Prove** that, if n is odd, then $b_n = 2 a_{n-2}$.

⁷ Hint: Use equation (1) and apply arithmetic.