Week 11 Mon/Wed Started here
Continue Section 16.2 The Möbius Function of a Pose
Review last week:
The set $U_{n}:=\{n \times n$ upper triangular matrices $\}$ forms an algebra with
addition: usual matrix addition

- multiplication: usual matrix multiplication.

Prop 1 If $F=\begin{gathered}\left(\begin{array}{c}f_{i, j} \\ q_{j}, c_{0} \\ \text { row } c_{0}\end{array}\right. \\ \end{gathered}, G=\left(g_{i, j}\right) \in u_{n}$,
then the (i, j) entry of F.G is the sum because $f_{i, j}=0=g_{i, j}$ if $i>j$

$$
\begin{aligned}
f_{i, 1} g_{1, j}+f_{i, 2} g_{2, j}+\ldots+f_{i, n} g_{n, j} & =f_{i, i} g_{i, j}+f_{i, i+1} g_{i+1, j}+\ldots+f_{i, j} g_{j, j} \\
& =\sum_{k=i}^{j} f_{i, k} g_{k}, j \\
& =\sum_{i \leq k i j} f_{i, k} g_{k, j}
\end{aligned}
$$

-The multiplicative identity of U_{n} is $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & \ddots\end{array}\right]$ because $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1\end{array}\right] F=F\left[\begin{array}{ccc}1 & 0 \\ 0 & \cdots\end{array}\right] \quad \forall \quad F \in U_{n}$..
Def: Let Int (P) denote the set of all NONEMPTY intervals of P.
Ex
Let $P=a_{a}^{c^{\prime}}{ }_{b}^{\prime} d^{d}$
Tasks for students

- List all intervals in the set $\operatorname{Int}(P)$
- How many are there?

Note to

Wing Wei:
This pose is from stanley EC 1
(1st ed)
$\operatorname{Sec} 3.6$
pg 261

Note: Each of
$[a, b],[a, d]$, and $[c, d]$ is equal to the empty interval.

There are twelve (non empty) intervals.

Def 2 If P is a locally finite posit.
Then the incidence algebra $I(P)$ of \ngtr is the set of all functions $f: \operatorname{Int}(P) \longrightarrow \mathbb{R}$.

- Addition is defined to be:

If $f, g \in I(P)$, then $(f+g)$ is the function $\operatorname{Int}(P) \rightarrow \mathbb{R}$ defined by:

$$
(f+g)([x, y])=f([x, y])+g([x, y]) \quad \forall[x, y] \in \operatorname{In}+(p)
$$

- Multiplication is defined to be:

If $f, g \in I(P)$, then $(f \cdot g)$ is the function $\operatorname{Int}(p) \rightarrow \mathbb{R}$ defined by: "convolution"

$$
(f \cdot g)[x, y]) \stackrel{\sum_{x \leq z \leq y}}{ } f([x, z]) g([z, y]) \quad(*)
$$

Ex
same

(1)

$$
\begin{aligned}
& j: \operatorname{Int}(P) \rightarrow \mathbb{R} \\
& j:[x, y] \mapsto 0
\end{aligned}
$$

for all $[x, y] \in \operatorname{Int}_{n}(P)$
(2) $g: \operatorname{Int}(P) \rightarrow \mathbb{R} \quad$ (3)

$$
g:[x, y] \mapsto 5
$$

for all $[x, y] \in \operatorname{Int}(p)$

$$
\text { (3) } \begin{aligned}
h: \operatorname{Int}(P) & \rightarrow \mathbb{R} \\
h:[a, a] & \mapsto 1 \\
{[a, c] } & \mapsto 2 \\
{[a, e] } & \mapsto \pi \\
{[x, y] } & \mapsto \sqrt{5} \text { for all } \begin{aligned}
\text { or her } \\
\text { intervals. }
\end{aligned} \\
& \text { in }
\end{aligned}
$$

(4) Def The delta function
(5) Def The zeta function

$$
\begin{aligned}
& \delta: \operatorname{Int}(P) \rightarrow \mathbb{R} \\
& \delta([x, y])= \begin{cases}1 & \text { if } x=y \\
0 & \text { if } x<y .\end{cases}
\end{aligned}
$$

$\zeta: \operatorname{Int}(P) \rightarrow \mathbb{R}$
$\zeta([x, y])=1$ for all $[x, y] \in \operatorname{Int}(P)$ the delta function
Remark
We can represent $h \in I(P)$ by and represent $\delta \in I(P)$ by

1	2		π	
	$\sqrt{5}$	$\sqrt{5}$	$\sqrt{5}$	$\sqrt{5}$
		$\sqrt{5}$		$\sqrt{5}$
			$\sqrt{5}$	$\sqrt{5}$
			$\sqrt{5}$	

These look like 5×5 upper triangular matrices
Prop δ is the multiplicative identity in $I(P)$.
Pf if $f \in I(P)$, then $(f \cdot \delta)[x, y]=\sum_{x \leqslant z \leqslant y} f([x, z]) \delta([z, y])$

$$
\begin{aligned}
& x \leqslant z \leqslant y \\
= & f([x, y]) \delta([y, y]) \\
= & \text { is none cause } \delta([z, y]) \\
= & f([x, y]) \square
\end{aligned}
$$

Prop 3 If p is finite with n elements, the incidence algebra I(P) is "isomorphic" to the algebra u_{n} of $n \times n$ upper triangular matrices.

Proof Label the celts of p by $t_{1}, t_{2}, \ldots, t_{n}$

$$
\text { so that } \underbrace{t_{i} \leq t_{p} t_{j}}_{\text {partial order in } p} \text { implies } \underbrace{i \leq j \text {. }}_{\text {usual ordering of }[n]}
$$

(Note: this is equivalent to fixing a linear extension of P)
Define a map $\varphi: I(p) \rightarrow u_{n}$
by $\quad \varphi: f \longmapsto M$
where $M=\left(m_{i j}\right)_{1 \leq i, j \leq n} \quad$ set

$$
m_{i, j}= \begin{cases}f\left(\left[t_{i}, t_{j}\right]\right) & \text { if } t_{i} \leq_{p} t_{j} \\ 0 & \text { otherwise }\end{cases}
$$

because $\begin{aligned} & {\left[t_{1}, t_{2}\right]} \\ & {\left[t_{1}, t_{4}\right]} \\ & \\ & {\left[t_{3}, t_{4}\right]}\end{aligned}$ is the empty interval.

Note 1 Multiplication in $I(P)$ is "the same" as matrix multiplication in U_{n} :
Given $f, g \in I(p)$, define matrices $F=\varphi(f)$ and $G=\varphi(g)$.
(For simplicity, define $f([x, y]):=0$ and $=\left(m_{i j}\right)=\left(h_{i j}\right)$
Then the (i, j) entry of $\neq G$, by Prop 1 , is equal to

$$
\begin{aligned}
\sum_{i \leq k \leq j} m_{i k} h_{k j} & =\sum_{i \leq k \leq j} f\left(\left[t_{i}, t_{k}\right]\right) g\left(\left[t_{k}, t_{j}\right]\right) \text { by def of } m_{i j} * h_{i j} . \\
& =\sum_{t_{i} \leq t_{k} \leq t_{j}} f\left(\left[t_{i}, t_{k}\right]\right) g\left(\left[t_{k}, t_{j}\right]\right) \begin{array}{l}
\text { since } f([x, y])=0=g([x, y]) \\
\text { if }[x, y] \text { is the } \\
\text { empty interval }
\end{array}
\end{aligned}
$$

done on
Friday $=(f-g)\left(\left[t_{i}, t_{j}\right]\right)$ by eq (*) in Def 2

This shows that $\underbrace{Q(f)}_{F} \cdot \underbrace{Q(g)}_{G}=Q\left(f_{i} g\right)$

- Note 2

Recall from earlier:
The multiplicative identity in U_{n} is the identity matrix $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & \ddots & \\ 0 & & 1\end{array}\right]$.

The multiplicative identity in $I(P)$ is

$$
\begin{aligned}
\delta: \operatorname{Int}(P) & \rightarrow \mathbb{R} \\
{[x, y] } & \mapsto\left\{\begin{array}{lll}
1 & \text { if } & x=y \\
0 & \text { if } & x<y .
\end{array}\right.
\end{aligned}
$$

Check that $\varphi(\delta)=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & & 1\end{array}\right]$.
End of Prop 3
Task for student
For $P=$ prove that $G(\delta)=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.

- Week 11 Friday started here

Today: Let P be a locally finite poses.
Def The zeta function $S \in I(p)$ is libined
by $\zeta([x, y]):=1$ for all $[x, y] \in \operatorname{Int}(P)$.
Egg. $P={ }_{3}^{3 / l_{2}^{4}}$

$$
\left.Z=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
-1 & 1 & 1 \\
0^{1} & 1 & 1 \\
1
\end{array}\right] \begin{array}{c}
\text { e interval } \\
1,3,5
\end{array}\right][1,5]:
$$

Note:

$$
\left.Z=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
4 & 0 & 1 \\
1 & 1 & 1 \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
& & 1 & 1 \\
& & & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 2 & 2 & 4 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{c}
\text { \# alts in in the } \\
\text { interval } \\
2,3,4,5
\end{array}\right]
$$

Prop $1 \delta^{2}([s, u])=\#$ elements between s and u (including s and u).
Pf $\zeta^{2}([s, u])=\sum_{s \leq t \leq u} 1$

$$
\begin{aligned}
& =\# \text { ells } t \text { st } s \leq t \leq u \\
& =\# \text { ells in the interval }[s, u] .
\end{aligned}
$$

Def A multichain in a poset P is a sequence $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ of alts in P satisfying $a_{1} \leq a_{2} \leq \ldots \leq a_{m}$.
"Note the inequalities are not strict, unlike in the def of chains".
Def The length of a chain/multichain is the \#elements minus 1.

Task for students

$$
\left\{\begin{array}{l}
s+a \\
s
\end{array}\right.
$$

$$
\text { starting at } 1 \text { and ending at } 5: \quad \begin{aligned}
& 1 \leq 2 \leq 5 \\
& 1 \leq 3 \leq 5 \\
& 1 \leq 5 \leq 5
\end{aligned}
$$

$$
[1,5]=\left\{\begin{array}{l}
1 \\
3 \\
5 \\
5
\end{array}\right\}
$$

$$
[4,5]=\left\{\begin{array}{c}
4 \\
5\}
\end{array}\right]
$$

$\begin{aligned} \text { Rem } 2 \text { The } \operatorname{map}\left\{\begin{array}{c}\text { multichains } \\ \text { of } \\ \text { length two } \\ \left.x=x_{0} \leq x_{1} \leq x_{2}=y\right\} \\ x_{1}\end{array}\right. & \longrightarrow\{\text { elements in interval }[x, y]\} \\ & \longmapsto x_{1}\end{aligned}$ is a bijection

Prop 3 By Prop 1 and Rem 2, $\zeta^{2}([x, y])=\#\left\{\begin{array}{c}\text { multichains of length two } \\ x=x_{0} \leq x_{1} \leq x_{2}=y\end{array}\right\}$

Proof of
Lemma 4 Let $Z=\varphi(\S)$

The (i, j) entry of Z^{2} is

$$
\left.\left.\sum_{i \leq h \leq j} Z_{i, h} \quad 2_{h, j}=\sum_{x \leqslant z \leqslant y}\right\}([x, z])\right\}([z, y])
$$

By induction on the exponent of Z, the (i, j) entry of Z^{k} is

$$
\left.\sum_{i \leqslant h \leqslant j}(Z)_{i, h}^{k-1} Z_{h, j}=\sum_{x \leqslant z \leqslant y} \delta^{k-1}([x, z])\right\}([z, y)
$$

Prop 16.12 Let $x \leq y$ be $e\left(t s\right.$ of P_{0} Let $k \geqslant 1$. Then the \# of multichains (of length k) $x=x_{0} \leq x_{1} \leq \ldots \leq x_{k}=y$ is equal to $\zeta^{k}([x, y])$.
week II Friday ended here
Cont Sec 16.2 Möbius function
Review: Choose a linear extension of a poset P

- The matrix $Z=\left(Z_{i, j}\right)$ for the ζ function has entries $Z_{i, j}= \begin{cases}1 & \text { if }[i, j] \text { is a non-empty interval } \\ 0 & 0 / \omega\end{cases}$

- Prop 1: $\left(Z^{2}\right)_{i, j}=\#$ elts in the interval $[i, j]$
- Lemma $4 \sum_{x \leq z \leq y} \zeta^{k-1}([x, y]) \zeta([z, y])=\zeta^{k}([x, y])$.

$$
x \leq z \leq y
$$

Prop 16.12 Let $x \leq y$ be cts of $P_{\text {. Let }} k \geqslant 1$.
Then the \# of multichains (of length k)
$x=x_{0} \leq x_{1} \leq \ldots \leq x_{k}=y$ is equal to $\zeta^{k}([x, y])$.
If We prove this by induction on k.
$\xi^{1}([x, y])=\xi([x, y]) \stackrel{\text { def }}{=} 1$, and the only possible multichain $x=x_{0} \leq x_{1}=y \quad$ is (x, y).
Suppose that the statement is true for all positive integers less than k.
Let $x=x_{0} \leq x_{1} \leq \ldots \leq x_{k}=y$ be a multichain of length k.
Then $x_{k-1}=z$ for some $z \in[x, y]$.
By the inductive hypothesis, the number of multichains of length $k-1$ between x and z is

$$
\xi^{k-1}([x, z])
$$

and the number of multichains $z \leq y$ of length 1 is

$$
\oint([x, y])=1
$$

So the \# of possibilities for a multichain $x=x_{0} \leq x_{1} \leq \ldots \leq x_{k}=y$ of length k is

$$
\left.\left.\sum_{z \in[x, y]}\right\}^{k-1}([x, z])\right\}([x, y])
$$

By Lemma 4, this expression is equal to $\zeta^{k}([x, y])$

Consider
the function $\delta-\delta \in I(P)$
incidence algebra, the sets of all functions $\operatorname{Int}(P) \rightarrow \mathbb{R}$.
Then $(\xi-\delta)([x, y])=\xi([x, y])-\delta([x, y])=\left\{\begin{array}{lll}1-0=1 & \text { if } & x<y \\ 1-1=0 & \text { if } & x=y\end{array}\right.$
Example:

$$
\varphi(\xi-\delta)=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 \\
0 & & 1 & 1 \\
0 & & 1
\end{array}\right]-\left[\begin{array}{lll}
1 & & 0 \\
{ }^{1} & & 1 \\
0 & 1 & 1 \\
0 & & 1
\end{array}\right]=\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 1 & 0
\end{array}=: 2 \searrow
$$

$(Z D)^{2}=\left[\begin{array}{llll}0 & 1 & & 1 \\ 0 & 1 & 1 & 1 \\ & 0 & & 1 \\ & & 0 & 1 \\ & & & 0\end{array}\right]\left[\begin{array}{llll}0 & & 4 & \\ & 0 & 1 & 1\end{array} 1\right.$
Prop I (Compare with Prop 1)
(1) $(\xi-\delta)^{1}([x, y])=$ chains $x=x_{0}<x_{1}=y$ of length 1

Pf If $x \leq y$, then \quad chains $x=x_{0}<x_{1}=y$ of length 1 is $\begin{cases}1 & \text { if } x<y \\ 0 & \text { if } x=y\end{cases}$
(ii) $(\xi-\delta)^{2}([x, y])=$ \# chains $x=x_{0}<x_{1}<x_{2}=y$ of length 2
$=\# e l t s$ in $[x, y]$ not counting x and y.
Lemma IV (Compare with Lemma 4)

$$
\begin{aligned}
& \sum_{z \in[x, y]}(\delta-\delta)^{k-1}([x, z]) \cdot(\xi-\delta)([z, y])=(\xi-\delta)^{k}([x, y]) \\
& \text { (Exercise) }
\end{aligned}
$$

Prop 16.13 (Compare with Prop 16.12) Let $k \geqslant 1$

$$
(\xi-\delta)^{k}([x, y])=\sum_{x=x_{0}\left\langle x_{1}<\cdots<x_{k}=y\right.} 1 \text {, that is }
$$

$(\xi-S)^{k}([x, y])$ is the \# of chains of length k which start at x and end in y.

Recap: Functions delta $\begin{array}{r}\delta \\ \text { zeta } \\ \text { multiplicative identity, }\end{array}$

$$
\xi-\delta \quad \text { in } I(p)
$$

Q : Find the inverse of the zeta function.

$$
Z=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
& 1 & 1 & 1 & 1 \\
& & 1 & 0 & 1 \\
& & & 1 & 1 \\
& & & & 1
\end{array}\right]
$$

$$
Z^{-1}=\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
& 1 & -1 & -1 & 1 \\
& 1 & 0 & -1 \\
0 & & 1 & -1 \\
& & & & 1
\end{array}\right]
$$

Question Does the rata function ζ of 7 have an inverse? If P is finite, Z^{-1} exists. What does Z^{-1} look like? (Stay tuned)

