First \& Last Name: \qquad
\qquad

Math 2310 Multivariable Calculus III Quiz 4 version b

Instructions: No notes or calculators are allowed. Each page is worth the same amount of points.

1. Consider the vector field $\mathbf{F}=\langle 7 x, 3 y\rangle$.
a.) First, demonstrate that \mathbf{F} is conservative (using the Test for Conservative Vector Fields).
b.) Then find its scalar potential function $\varphi(x, y)$. (Show all work on this paper.)

Solution: (Taken from MML Sec 17.3 Problem 3. For more practice, do Problems 2, 5, 6.)
Let $\mathbf{F}=\langle f, g\rangle=\langle 7 x, 3 y\rangle$
a.) The Test for Conservative Vector Fields in \mathbb{R}^{2} has a single condition $f_{y}=g_{x}$.

We checked that

$$
\begin{aligned}
f_{y} & =0 \\
g_{x} & =0
\end{aligned}
$$

So \mathbf{F} is indeed conservative.
b.) We want to find a function $\varphi(x, y)$ such that $\varphi_{x}=f=7 x$ and $\varphi_{y}=g=3 y$.

1. Integrate $\varphi_{x}=f$ with respect to x to obtain φ, which includes an arbitrary function $c(y)$:

$$
\varphi=\int 7 x d x=7 \frac{x^{2}}{2}+c(y)
$$

2. Compute φ_{y} (using the previous item):

$$
\varphi_{y}=c^{\prime}(y)
$$

then equate this φ_{y} to g to obtain an expression for $c^{\prime}(y)$:

$$
c^{\prime}(y)=3 y
$$

3. Integrate $c^{\prime}(y)$ (with respect to y) to obtain $c(y)$:

$$
c(y)=3 \frac{y^{2}}{2}+d
$$

and we can take $d=0$.
Putting it all together, a potential function is

$$
\varphi=7 \frac{x^{2}}{2}+3 \frac{y^{2}}{2}
$$

Optional: do a confidence check by computing the gradient of the function φ you found in part (b).
2. Consider the vector field $\mathbf{F}=\langle y, x\rangle$ shown below. Compute the outward flux across the portion of the circle $x^{2}+y^{2}=4$ that is in the third quadrant. (Show all work on this paper.)

Hint: The quarter circle in the third quadrant can be parametrized by $\mathbf{r}=\langle 2 \cos t, 2 \sin t\rangle$ for $\pi \leq t \leq \frac{3 \pi}{2}$.

Solution: (Taken from MML Sec 17.2 Problem 11. For more practice, do also Problem 12.)
Let

$$
\mathbf{F}=\langle f, g\rangle=\langle y, x\rangle
$$

and

$$
C: \mathbf{r}=\langle x(t), y(t)\rangle=\langle 2 \cos t, 2 \sin t\rangle \text { for } \pi \leq t \leq \frac{3 \pi}{2}
$$

So

$$
\begin{array}{r}
f(t)=2 \sin t, g(t)=2 \cos t \\
x^{\prime}(t)=-2 \sin t, y^{\prime}(t)=2 \cos t
\end{array}
$$

Then the flux of \mathbf{F} across C is

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{n} d s & =\int_{a}^{b}\left(f(t) y^{\prime}(t)-g(t) x^{\prime}(t)\right) d t \\
& =\int_{\pi}^{\frac{3 \pi}{2}} 2 \sin t 2 \cos t-2 \cos t(-2 \sin t) d t \\
& =\int_{\pi}^{\frac{3 \pi}{2}} 8 \cos t \sin t d t \\
& =\int_{\pi}^{\frac{3 \pi}{2}} 4 \sin (2 t) d t \\
& \left(\text { use the identity } \sin \theta \cos \theta=\frac{\sin (2 \theta)}{2}, \text { or use u-substitution with } u=\cos (t) \text { or } \sin (t)\right) \\
& =4\left[-\left.\frac{\cos (2 t)}{2}\right|_{\pi} ^{\frac{3 \pi}{2}}\right. \\
& =-\frac{4}{2}(\cos (3 \pi)-\cos (2 \pi)) \\
& =-\frac{4}{2}(-1-1)=4
\end{aligned}
$$

