First \& Last Name: $\qquad$ Student ID: $\qquad$

## Math 2310 Multivariable Calculus III Quiz 3 version b

Instructions: No notes or calculators are allowed. Please box your final answer.

1. $(6 \mathrm{pts})$ Find an equation of the plane tangent to the surface $4 e^{x y}-z=0$ at the point $(13,0,4)$. (Show all work on this paper.)

Solution: (Taken from MML Sec 15.6 Problem 5. For more practice, do Problems 1, 3, 4, 6, 7.) Let $F(x, y, z)=4 e^{x y}-z$, and compute the partial derivatives at the point $P_{0}=(13,0,4)$ :

$$
\begin{array}{ll}
F_{x}=4 y e^{x y} & F_{x}\left(P_{0}\right)=0 \\
F_{y}=4 x e^{x y} & F_{y}\left(P_{0}\right)=4(13) e^{0}=4(13) \\
F_{z}=-1 & F_{z}\left(P_{0}\right)=-1
\end{array}
$$

An equation of the plane tangent to the surface $F(x, y, z)=0$ at $P_{0}(a, b, c)$ is

$$
F_{x}\left(P_{0}\right)(x-a)+F_{y}\left(P_{0}\right)(y-b)+F_{z}\left(P_{0}\right)(z-c)=0
$$

so an answer is

$$
0(x-13)+4(13)(y-0)-1(z-4)=0 \text { or } 4(13) y-z+4=0 \text { or } z=4(13) y+4
$$

2. (1 pt) If $f_{x}(4,5)=0$ and $f_{y}(4,5)=0$, does it follow that $f$ has a local maximum or local minimum at $(4,5)$ ? Explain.
$\bigcirc$ Yes. The tangent plane to $f$ at $(4,5)$ is horizontal. This indicates the presence of a local maximum or a local minimum at $(4,5)$.
$\bigcirc$ Yes. The point $(4,5)$ is a critical point and must be a local maximum or local minimum.
$\bigcirc$ No. One (or both) of $f_{x}$ and $f_{y}$ must also not exist at $(4,5)$ to be sure that $f$ has a local maximum or local minimum at $(4,5)$.
$\bigcirc$ No. It follows that $(4,5)$ is a critical point of $f$, and $(4,5)$ is a candidate for a local maximum or local minimum.
(Fill in the circle next to the correct answer. There is only one correct answer.)

## Solution: (From MML Section 15.7 Problem 1)

Last choice:
No. It follows that $(4,5)$ is a critical point of $f$, and $(4,5)$ is a candidate for a local maximum or local minimum.
3. $(3 \mathrm{pts})$ Reverse the order of integration in


## Solution:

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x
$$

(Taken from MML 16.2 Problem 11. For similar problems, see also Problems 1, 6, 8, 12, 13.)

