First \& Last Name: \qquad Student ID: \qquad

Math 2310 Multivariable Calculus III Quiz 2 version b

Instructions: No notes or calculators are allowed. Please box your final answer.

1. (4 pts) a.) Graph the curve described by the following.

$$
\mathbf{r}(t)=\langle 7 \cos t, 3 \sin t\rangle \text { for } 0 \leq t \leq 2 \pi
$$

b.) Indicate the direction of positive orientation.

Solution: See MML Section 14.2 Problems 4

2. (4 pts) Recall that the unit tangent vector for a smooth curve \mathbf{r} is $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.

Consider the parametrized curve for a circle

$$
\mathbf{r}(t)=\langle 10,5 \cos t, 5 \sin t\rangle
$$

a.) Differentiate $\mathbf{r}(t)$.
b.) Find the unit tangent vector $\mathbf{T}(t)$ for $\mathbf{r}(t)$.

Solution: See Textbook Section 14.2 Example 2 (b). See also MML Section 14.2 Problem 7.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle 0,-5 \sin t, 5 \cos t\rangle \\
\left|\mathbf{r}^{\prime}(t)\right| & =\sqrt{0^{2}+5^{2} \sin ^{2} t+5^{2} \cos ^{2} t}=\sqrt{5^{2}\left(\sin ^{2} t+\cos ^{2} t\right)}=\sqrt{5^{2}(1)}=5 \\
\mathbf{T}(t) & =\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{1}{5}\langle 0,-5 \sin t, 5 \cos t\rangle=\langle 0,-\sin t, \cos t\rangle
\end{aligned}
$$

3. $(2 \mathrm{pts})$ Consider the following equation of a quadric surface.

$$
x=9-3 y^{2}-5 z^{2}
$$

Find an equation of the $x z$-trace or state that the $x z$-trace doesn't exist.

Solution: To find the $x z$-trace, set the "missing" variable y to 0 . The equation of the $x z$-trace is $x=9-5 z^{2}$.
See MML Section 13.6 problems 8-10.

