13.2 Vectors in three dimensions

A $3 D$ coordinate system is created by adding the z-axis to the $x y$-plane

The set of all points described by the triples (x, y, z) is called three-dimensional space, xyz-space, or \mathbb{R}^{3}.

Part I: 3D space
To represent a point in \mathbb{R}^{3}, draw 3 coordinate axes.

Def: The $x y$-plane is the
(horizontal) plane containing the x-axis and the y-axis

The three planes divide space into eight octants.

The first octant is determined by the positive axes.

Part I: 3D space
To find the point (a, b, c) in \mathbb{R}^{3}, start from the origin 0
Move a units along the x-axis
Move b units parallel to the y-axis
Move c units parallel to the z-axis

Examples: point $(-4,3,-5)$ point $(3,-2,-6)$

Part II: Equations of simple planes
EXAMPLE 1 What surfaces in \mathbb{R}^{3} are represented by the following equations?
(a) $z=3$
(b) $y=5$

The set of points $(x, y, 3)$ where x and y can be

The set of all points (x, y, z) in $3 D$ space where $y=5$ and x, z can be any number. Parallel to the $x z-p l a n e ~ y=0$ (the "left wall")

(a) $z=3$, a plane in \mathbb{R}^{3}

(b) $y=5$, a plane in \mathbb{R}^{3}

Parallel to the $x y$-plane $z=0$ (the horizontal "floor")

Ex:
An equation for the plane parallel to the xz-plane and passing through the point $(2,5, \mathbf{8})$ is
Sol: Points on a plane parallel to the $x z$-plane have the same y-coordinate. Since point $(2,5,8)$ has y-coordinate -3 , the equation is $y=5$ (x, z can be any number)

Note:
If we replace "xz-plane" with "yz-plane", the

(b) $y=5$, a plane in \mathbb{R}^{3}

Part II: Planes

EXAMPLE 3 Describe and sketch the surface in \mathbb{R}^{3} represented by the equation $y=x$.
Go to geogebra. org/3d and type $y=x$ or desmos.com $/ 3 d$ Extend to 3D

The surface is the set of points $(x, y, z)=(x, x, z)$ where x and z are any numbers.

We get a plane containing:

* the z-axis (since $(0,0, z)$ is in the surface for any z)
* the line $y=x, z=0$

Step 1: Sketch

Step 2: Draw on the floor:

Step 3: Allows any value for z to get an "infinite wall"

Plane $y=x$

Part III: Distance in $\underbrace{x y z-s p a c e}_{\mathbb{R}^{3}}$

Distance Formula in Three Dimensions The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Why?

- Apply Pythagorean Theorem to find $\left|P_{1} B\right|$
- Apply it again for

EXAMPLE 4 The distance from the point $P(2,-1,7)$ to the point $Q(1,-3,5)$ is

$$
|P Q|=\sqrt{(1-2)^{2}+(-3+1)^{2}+(5-7)^{2}}=\sqrt{1+4+4}=3
$$

The midpoint of the line segment of the line joining $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

averages of the $x-, y_{-}$, and

Optional
Extra Example (if you have extra time):

Find the distance from $(-4,3,-5)$ to the $x y$-plane.

Find the distance from $(-4,3,-5)$ to the y-axis.

Answer:
The point on the y-axis closest to $(-4,3,-5)$ is $(0,3,0)$.
Distance: $\sqrt{(-4-0)^{2}+(3-3)^{2}+(-5-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{16+25} \\
& =\sqrt{41}
\end{aligned}
$$

Part IV: Spheres

- A sphere with center (a, b, c) and radius r is the set of all points that are of distance r from the center.
- A ball is the set of all points inside and on the sphere.

The set of points of distance r from (a, b, c) can be described by equation

$$
r=\sqrt{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}} \quad, \text { so } .
$$

A sphere centered at (a, b, c) with radius r is the set of points satisfying the equation

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2} .
$$

A ball centered at (a, b, c) with radius r is the set of points satisfying the inequality

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \leq r^{2} .
$$

These two equations are Sphere: $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$ Ball: $(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \leq r^{2}$
(same as MML Problem 5)
EXAMPLE 3 Equation of a sphere Consider the points $P(1,-2,5)$ and $Q(3,4,-6)$. Find an equation of the sphere for which the line segment $P Q$ is a diameter.
SOLUTION The center of the sphere is the midpoint of $P Q$:

$$
\left(\frac{1+3}{2}, \frac{-2+4}{2}, \frac{5-6}{2}\right)=\left(2,1,-\frac{1}{2}\right) .
$$

The diameter of the sphere is the distance $|P Q|$, which is

$$
\sqrt{(3-1)^{2}+(4+2)^{2}+(-6-5)^{2}}=\sqrt{161}
$$

Therefore, the sphere's radius is $\frac{1}{2} \sqrt{161}$, its center is $\left(2,1,-\frac{1}{2}\right)$, and it is described by the equation

$$
(x-2)^{2}+(y-1)^{2}+\left(z+\frac{1}{2}\right)^{2}=\left(\frac{1}{2} \sqrt{161}\right)^{2}=\frac{161}{4} .
$$

Ex (Identifying equations): Describe the set of points that satisfy the equation

$$
x^{2}+y^{2}+z^{2}+4 x-6 y+2 z+6=0
$$

Answer:

$$
2 \quad x \quad y \quad 1 \quad 2 \quad 1 \quad 0 \quad x_{2},
$$

$$
x^{2}+4 x+y^{2}-6 y+z^{2}+2 z=-6
$$

$$
\text { "Complete squares" } x^{2}+4 x+2^{2}+y^{2}-6 y+3^{2}+z^{2}+2 z+1^{2}=-6+4+9+1
$$

$$
(x+2)^{2}+(y-3)^{2}+(z+1)^{2}=8
$$

of a sphere

Comparing this equation with the standard form, we see that it is the equation of a sphere with center $(-2,3,-1)$ and radius $\sqrt{8}=2 \sqrt{2}$.

Extra Example

(same as MML Problems 6,7)
EXAMPLE 4 Identifying equations Describe the set of points that satisfy the equation $x^{2}+y^{2}+z^{2}-2 x+6 y-8 z=-1$.

SOLUTION We simplify the equation by completing the square and factoring:

$$
\begin{aligned}
\left(x^{2}-2 x\right)+\left(y^{2}+6 y\right)+\left(z^{2}-8 z\right) & =-1 & & \text { Group terms. } \\
\left(x^{2}-2 x+1\right)+\left(y^{2}+6 y+9\right)+\left(z^{2}-8 z+16\right) & =25 & & \text { Complete the square. } \\
(x-1)^{2}+(y+3)^{2}+(z-4)^{2} & =25 . & & \text { Factor. }
\end{aligned}
$$

The equation describes a sphere of radius 5 with center $(1,-3,4)$.

Part V: Vectors in \mathbb{R}^{3}
Vectors in \mathbb{R}^{3} are straight forward extensions of vectors in the $x y$-plane. We simply add a ard component.

- Vectors having the same length and direction are equal.
(. The position vector $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ has its tail (starting point) at the origin and its head (terminal point) is the point $\left(v_{1}, v_{2}, v_{3}\right)$.

Here $\overrightarrow{R S}$ and $\overrightarrow{P Q}$ and \vec{v} are all equal because they have the same magnitude and direction.

Optional Example:
What position vector is equal to the vector from $(-6,2,1)$ to $(2,3,-7)$?

Sol: $\langle 2-(-6), 3-2,-7-1\rangle=\langle 8,1,-8\rangle$
(This page is optional)

Sum of two vectors is found geometrically as before

scalar multiple corresponds to stretching / compressing a vector, with a reversal of direction for negative scalar

Def of vector addition and scalar multiplication:
Let r be a scalar, $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, ~ \& ~ \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$.
Sum $\quad \vec{a}+\vec{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle$.
Scalar multiple $\quad r \bar{a}=\left\langle r a_{1}, r a_{2}, r a_{3}\right\rangle$.

Optional Example:
Let $\mathbf{u}=\langle 2,-4,1\rangle$ and $\mathbf{v}=\langle 3,0,-1\rangle$

$$
\mathbf{u}+2 \mathbf{v}=\langle 2,-4,1\rangle+2\langle 3,0,-1\rangle=\langle 8,-4,-1\rangle
$$

Part V: Magnitude and unit vectors Again, we simply add a 3rd component

$$
\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

The length of the three-dimensional vector $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Optional
$E x=$ Find the length of the vector $\mathbf{v}=\langle 10,6,3\rangle$. Sol: $\sqrt{10 \cdot 10+6 \cdot 6+3 \cdot 3}=\sqrt{145}$.

The coordinate unit vectors (or standard basis vectors) in \mathbb{R}^{3} are $\quad \mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad$ and $\quad \mathbf{k}=\langle 0,0,1\rangle$.

These unit vectors give an alternative way of expressing position vectors. If $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then we have

$$
\mathbf{v}=v_{1}\langle 1,0,0\rangle+v_{2}\langle 0,1,0\rangle+v_{3}\langle 0,0,1\rangle=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k} .
$$

Optional Example
EXAMPLE 6 Magnitudes and unit vectors Consider the points $P(5,3,1)$ and $Q(-7,8,1)$.
a. Express $\overrightarrow{P Q}$ in terms of the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}.
b. Find the magnitude of $\overrightarrow{P Q}$.
c. Find the position vector of magnitude 10 in the direction of $\overrightarrow{P Q}$.

SOLUTION

a. $\overrightarrow{P Q}$ is equal to the position vector $\langle-7-5,8-3,1-1\rangle=\langle-12,5,0\rangle$. Therefore, $\overrightarrow{P Q}=-12 \mathbf{i}+5 \mathbf{j}$.
b. $|\overrightarrow{P Q}|=|-12 \mathbf{i}+5 \mathbf{j}|=\sqrt{12^{2}+5^{2}}=\sqrt{169}=13$
c. The unit vector in the direction of $\overrightarrow{P Q}$ is $\mathbf{u}=\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\frac{1}{13}\langle-12,5,0\rangle$. Therefore, the vector in the direction of \mathbf{u} with a magnitude of 10 is $10 \mathbf{u}=\frac{10}{13}\langle-12,5,0\rangle$.

Extra Examples
Consider the sphere $(x-3)^{2}+(y-5)^{2}+(z-4)^{2}=25$
(a) Does the sphere intersect each of the following planes at zero points, at one point, at two points, in a line, or in a circle?
i. The sphere intersects the yz-plane ?

- $y z$-plane is the collection of points $(0, y, z)$

- Set $x=0:(-3)^{2}+(y-5)^{3}+(z-4)^{2}=25$

$$
\left.(y-5)^{5}+(2-4)^{2}=16\right\} \text { a circle }
$$

The sphere intersects the $y z$-plane in a circle
ii. The sphere intersects the xz-plane ?

Answer: The $x z$-plane is the set of points $(x, 0,2)$ for any x, z.

$$
\text { Set: } \begin{aligned}
& (x-3)^{2}+(-5)^{2}+(2-4)^{2}=25 \\
& (x-3)^{2}+(2-4)^{2}=0
\end{aligned}
$$

This equation is satisfied for $x=3, z=4$
So the sphere intersects the $x z$-plane at exactly one point. This point is $(x=3, y=0, z=4)$

Extra Examples
Consider the sphere $(x-3)^{2}+(y-5)^{2}+(z-4)^{2}=25$
(b) Does the sphere intersect each of the following coordinate axes at zero points, at one point, at two points, or in a line?

The sphere intersects the z -axis ?

FIGURE 1
Coordinate axes

The z-axis $\}_{0}^{z}$ is the set of points $(0,0,2), z$ any number

Set $x=y=0:(-3)^{2}+(-5)^{2}+(z-4)^{2}=25$

$$
(z-4)^{2}=-9
$$

No z satisfies this equation
The sphere does not intersect the z-axis

