13.1 2D Vectors in the plane

Def (vector)

A vector is a quantity with length (magnitude) and direction.

- The vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are equal
bold text
- The zero vector, denoted \mathbf{O} or $\overrightarrow{0}$. has length zero and no direction.

Def (Scalar multiplication)
Def A scalar is a number
Def If \vec{V} is a vector and c is a number, the scalar multiple $c \vec{V}$ is a vector with...

- length $|c|$ times length of \vec{V}
- (if $c>0$) same direction as \vec{V} (if $c<0$) opposite direction to \vec{v}
- If $c=0$ or $\vec{v}=\overrightarrow{0}$, then $c \vec{v}=\overrightarrow{0}$.

Scalar multiples of \vec{v}
same direction as \vec{v}

The numbers $1,2, \frac{1}{2},-1,-1.5$ "scale" the vector \vec{V}.
That's why they are called scalars.

Note: Two vectors are parallel (having the same or opposite direction) if they are scalar multiples of one another.

Def (vector addition)
To get the vector $\vec{u}+\vec{v}$,
put the initial point of v at the terminal point of u.

Then $\vec{u}+\vec{v}$ is the vector from the initial point of \vec{u} to the terminal point of \vec{v}

$$
\text { Fact: } \quad \vec{u}+\vec{v}=\vec{v}+\vec{u}
$$

Vector subtraction:

Finding $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})$ by Triangle Rule

Ex: Write the vectors
a) $\overrightarrow{O P}$,
b) $\overrightarrow{O Q}$,
c) $\overrightarrow{Q R}$
as sums of scalar multiples (linear combinations) of \vec{v} and \vec{w}.

Sol:
a)

b)

C)

$$
\overrightarrow{O Q}=3 \vec{v}-\vec{w}
$$

$$
\overrightarrow{Q R}=\vec{v}+2 \stackrel{\rightharpoonup}{w}
$$

Vector Components
A vector \vec{v} with its tail at the origin and head at the point (a, b) is called a position vector and is written $\langle a, b\rangle$. x-component of \vec{v}-component of \vec{v}

Position vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$

Copies of \mathbf{v} at different locations are equal.

Ex:
Find a vector with representation given by

Magnitude or length of a vector

The length of the two-dimensional vector $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is (or magnitude)

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

Ex: Given the points $p(-3,4)$ and $Q(6,5)$, find the components and magnitude of the vector $\overrightarrow{P Q}$.

Sol: a) $\quad \overrightarrow{P Q}=\langle 6-(-3), 5-4\rangle=\langle 9,1\rangle$
X-component is 9
y-component is 1
b) Magnitude $|\overrightarrow{P Q}|$ is $\sqrt{9^{2}+1^{2}}=\sqrt{82}$

Adding vectors using algebra

If $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$, then

$$
\mathbf{a}+\mathbf{b}=\langle a_{1}+b_{1}, \underbrace{a_{2}+b_{2}}\rangle
$$

Add each component of \vec{a} and \vec{b}

Ex: If $\mathbf{a}=\langle 4,0 \quad\rangle$ and $\mathbf{b}=\langle-2,1 \quad\rangle$,

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =\langle 4,0 \quad\rangle+\langle-2,1 \quad\rangle \\
& =\langle 4+(-2), 0+1 \quad\rangle=\langle 2,1 \quad\rangle
\end{aligned}
$$

Scaling vector using algebra

$$
c \mathbf{a}=\left\langle c a_{1}, c a_{2}\right\rangle
$$

Multiply each Component of \vec{a} by c

EX: If $\mathbf{a}=\langle 4,0 \quad\rangle$ and $\mathbf{b}=\langle-2,1 \quad\rangle$,

$$
\begin{array}{rlrl}
2 \mathbf{a}+5 \mathbf{b} & =2\langle 4,0 \quad\rangle+5\langle-2,1 & \rangle \\
& =\langle 8,0 \quad\rangle+\langle-10,5 & \rangle=\langle-2,5 & \rangle
\end{array}
$$

MML Problem 16

Let $\bar{u}=\langle 1,1\rangle, \bar{v}=\langle 5,-1\rangle$, and $\bar{w}=\langle-4,0\rangle$. Find the vector \bar{x} that satisfies

$$
10 \bar{u}-\bar{v}+\bar{x}=8 \bar{x}+\bar{w} .
$$

Answer:

$$
\begin{array}{r}
10 \vec{u}-\vec{v}-\vec{\omega}=7 \vec{x} \\
\frac{1}{7}(10 \vec{u}-\vec{v}-\vec{w})=\vec{x}
\end{array}
$$

$$
\begin{aligned}
\vec{x} & =\frac{1}{7}(\langle 10.1,10.1\rangle-\langle 5,-1\rangle-\langle-4,0\rangle) \\
& =\frac{1}{7}(\langle 10-5+4,10+1\rangle) \\
& =\frac{1}{7}\langle 9,11\rangle \\
& =\left\langle\frac{9}{7}, \frac{11}{7}\right\rangle
\end{aligned}
$$

Unit Vectors

Any vector with length 1 is a unit vector.
Ex: Coordinate unit vectors $\hat{\imath}=\langle 1,0\rangle$ and $\hat{\jmath}=\langle 0,1\rangle$
(also called standard basis vectors)

Any $2 D$ vector can be written as a linear combination $a \hat{\imath}+b \hat{\jmath}$ of $\hat{\imath}$ and $\hat{\jmath}$:

Ex:
In general:

Ex: Consider the points $P(1,-2)$ and $Q(6,10)$.
a.) Find two unit vectors parallel to $\overrightarrow{P Q}$.

Sol: $\overrightarrow{P Q}=\langle 6-1,10-(-2)\rangle=\langle 5,12\rangle$ or $5 \hat{\imath}+12 \hat{\jmath}$

Length of $\overrightarrow{P Q}$ is $|\overrightarrow{P Q}|=\sqrt{5^{2}+12^{2}}=\sqrt{25+144}=\sqrt{169}=13$
. The unit vector pointing in the same direction as $\overrightarrow{P Q}$ is $\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\frac{1}{13}\langle 5,12\rangle=\left\langle\frac{5}{13}, \frac{12}{13}\right\rangle$
or $\frac{5}{13} \hat{\imath}+\frac{12}{13} \hat{\jmath}$

- The unit vector parallel to $\overrightarrow{P Q}$ with the opposite direction is $-\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\left\langle-\frac{5}{13},-\frac{12}{13}\right\rangle$
b.) Find two vectors of length 2 parallel to $\overrightarrow{P Q}$ Sol: Multiply the two unit vectors above by 2 :

$$
\begin{aligned}
& 2\left(\frac{5}{13} \hat{\imath}+\frac{12}{13} \hat{\jmath}\right)=\frac{10}{13} \hat{\imath}+\frac{24}{13} \hat{\jmath} \\
& 2\left(-\frac{5}{13} \hat{\imath}-\frac{12}{13} \hat{\jmath}\right)=-\frac{10}{13} \hat{\imath}-\frac{24}{13} \hat{\jmath}
\end{aligned}
$$

