13.1 2) Vectors in the plane

Def (vector)

A <u>vector</u> is a quantity with length (magnitude) and direction.

- has length zero and no direction.

Def (Scalar multiplication)

Def A scalar is a number

Def If \vec{v} is a vector and c is a number,

the scalar multiple c v is a vector with ...

- · length |c| times length of V
- (if c > 0) same direction as \vec{v} (if c < 0) opposite direction to \vec{v}
- If C=0 or $\vec{V}=\vec{0}$, then $C\vec{V}=\vec{0}$.

Scalar multiples of V

The numbers 1, 2, $\frac{1}{2}$, -1, -1.5 "scale" the vector \vec{V} .

That's why they are called scalars.

Note: Two vectors are parallel (having the same or opposite direction) if they are scalar multiples of one another.

Def (vector addition)

To get the vector $\vec{u} + \vec{v}$,

put the initial point of \vec{v} at the terminal point of \vec{u} .

Then $\vec{u}+\vec{v}$ is the vector from the initial point of \vec{u} to the terminal point of \vec{v}

Fact:
$$\hat{u} + \hat{v} = \hat{v} + \hat{u}$$

Vector Subtraction:

Ex: Write the vectors

a) \overrightarrow{OP} , b) \overrightarrow{OQ} , c) \overrightarrow{QR}

as sums of scalar multiples (linear combinations) of

 \overline{V} and \overline{W} .

Vector Components

A vector \vec{v} with its tail at the origin and head at the point (a,b) is called a position vector and is written (a,b).

X-component of \vec{v} y-component of \vec{v}

EX:

Find a vector with representation given by CD

Answer
$$< 5-4, 4-2 >$$

Magnitude or length of a vector

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is $\left(\text{or magnitude} \right)$ $\left| \mathbf{a} \right| = \sqrt{a_1^2 + a_2^2}$

Ex: Given the points $\not\models (-3,4)$ and Q(6,5), find the components and magnitude of the vector \overrightarrow{PQ} .

 $Sol: a) PQ = \langle 6-(-3), 5-4 \rangle = \langle 9, 1 \rangle$

X-component is 9 y-component is 1

b) Magnitude $|\overline{PQ}|$ is $\sqrt{9^2 + 1^2} = \sqrt{82}$

Adding vectors using algebra

If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$

Add each component of a and b

Ex: If
$$\mathbf{a} = \langle 4, 0 \rangle$$
 and $\mathbf{b} = \langle -2, 1 \rangle$,
 $\mathbf{a} + \mathbf{b} = \langle 4, 0 \rangle + \langle -2, 1 \rangle$

$$= \langle 4 + (-2), 0 + 1 \rangle = \langle 2, 1 \rangle$$

Scaling vector using algebra

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

Multiply each
Component of à by c

EX: If
$$\mathbf{a} = \langle 4, 0 \rangle$$
 and $\mathbf{b} = \langle -2, 1 \rangle$,
 $2\mathbf{a} + 5\mathbf{b} = 2\langle 4, 0 \rangle + 5\langle -2, 1 \rangle$

$$= \langle 8, 0 \rangle + \langle -10, 5 \rangle = \langle -2, 5 \rangle$$

MML Problem 16

Let $\overline{u} = \langle 1, 1 \rangle$, $\overline{v} = \langle 5, -1 \rangle$, and $\overline{w} = \langle -4, 0 \rangle$. Find the vector \overline{x} that satisfies $10\overline{u} - \overline{v} + \overline{x} = 8\overline{x} + \overline{w}.$

Answer:

$$|0\vec{u} - \vec{v} - \vec{\omega}| = 7\vec{x}$$

$$\frac{1}{7} \left(|0\vec{u} - \vec{v} - \vec{\omega}| \right) = \vec{x}$$

$$\overrightarrow{x} = \frac{1}{7} \left(\langle 10.1, 10.1 \rangle - \langle 5, -1 \rangle - \langle -4, 0 \rangle \right)$$

$$= \frac{1}{7} \left(\langle 10 - 5 + 4, 10 + 1 \rangle \right)$$

$$= \frac{1}{7} \left\langle 9, 11 \right\rangle$$

$$= \left\langle \frac{9}{7}, \frac{11}{7} \right\rangle$$

Unit Vectors

Any vector with length 1 is a unit vector.

Ex: Coordinate unit vectors 1 = (1,0) and j = (0,1)

Any 2D vector can be written as a linear combination aî + bĵ of î and ĵ:

$(3,4) = 3\mathbf{i} + 4\mathbf{j}$ $3\mathbf{i} + 4\mathbf{j}$ $2\mathbf{j}$ $3\mathbf{i}$ 0 1 2 3 4 3 4 3 4 3

In general:

Ex: Consider the points
$$P(1,-2)$$
 and $Q(6,10)$.

a.) Find two unit vectors parallel to Pa.

Sol:
$$\overline{PQ} = \langle 6-1, 10-(-2) \rangle = \langle 5, 12 \rangle$$
 or $5\hat{1} + 12\hat{j}$

Length of
$$\overrightarrow{PQ}$$
 is $|\overrightarrow{PQ}| = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13$

. The unit vector pointing in the same direction

as
$$\overrightarrow{PQ}$$
 is $\frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} = \frac{1}{13} \langle 5, 12 \rangle = \langle \frac{5}{13}, \frac{12}{13} \rangle$
or $\frac{5}{13} \hat{1} + \frac{12}{13} \hat{j}$

The unit vector parallel to
$$\overrightarrow{PQ}$$
 with the opposite direction is $-\frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} = \left\langle -\frac{5}{13}, -\frac{12}{13} \right\rangle$

b.) Find two vectors of length 2 parallel to PQ

Sol: Multiply the two unit vectors above by 2:

Multiply the two unit vectors are
$$2\left(\frac{5}{13}\hat{1} + \frac{12}{13}\hat{j}\right) = \frac{10}{13}\hat{1} + \frac{24}{13}\hat{j}$$

$$2\left(-\frac{5}{13}\hat{1} - \frac{12}{13}\hat{j}\right) = -\frac{10}{13}\hat{1} - \frac{24}{13}\hat{j}$$