Additional Review Problems 2,6-10
2. Find a normal vector to the surface $x y-z^{2}=y^{2} z-1$ at the point $(7,3,2)$. Then find the equation of the tangent plane at this point. $=P_{0}$
Move all variables to one side: $0=-x y+z^{2}+y^{2} z-1$
Set $F(x, y, z):=-x y+z^{2}+y^{2} z-1$

$$
\begin{aligned}
& F_{x}=-y, \quad F_{y}=-x+2 y z, \quad F_{z}=2 z+y^{2} \\
& F_{x}\left(P_{0}\right)=-3, \quad F_{y}\left(P_{0}\right)=-7+2(3)(2)=5, \quad F_{z}\left(P_{0}\right)=4+3^{2}=13
\end{aligned}
$$

$\nabla F\left(p_{0}\right)=\langle-3,5,13\rangle$ or any nonzero scalar multiple is a normal vector to $0=F(x, y, z)$

Equation of the tangent plane at $P_{0}(7,3,2)$ is

$$
\begin{aligned}
& -3(x-7)+5(y-3)+13(z-2)=0 \\
& -3 x+5 y+13 z=20
\end{aligned}
$$

6. Convert the following double integral from Cartesian to polar coordinates. Then evaluate the integral:

$$
\begin{aligned}
& \int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sin (\underbrace{\left.\operatorname{six^{2}+\pi y^{2}}\right) d y d x}_{\pi\left(x^{2}+y^{2}\right)} \\
& R \stackrel{6}{=}\left\{(x, y):-3 \leq x \leq 3, \quad 0 \leq y \leq \sqrt{9-x^{2}}\right\} \text { in Cartesian }
\end{aligned}
$$

Sketch of R :

$$
R=\{(r, \theta): 0 \leq r \leq 3, \quad 0 \leq \theta \leq \pi\} \text { in polar }
$$

Herated integral in polar:

$$
\int_{0}^{\pi} \int_{0}^{3} \sin \left(\pi r^{2}\right) \sqrt{r} d r d \theta
$$

inner $\int_{0}^{3} r \sin \left(\pi r^{2}\right) d r=\frac{1}{2} \int_{u=0}^{u=9} \sin (\pi u) d u=-\left.\frac{1}{2} \frac{1}{\pi} \cos (\pi u)\right|_{u=0} ^{u=9}$

$$
u=r^{2}
$$

$$
d u=2 r d r
$$

$$
\frac{1}{2} d u=r d r
$$

$$
=-\frac{1}{2 \pi}[\cos (\pi 9)-\cos (0)]=-\frac{1}{2 \pi}[-1-1]=\frac{1}{\pi}
$$

outer $\int_{0}^{\pi} \frac{1}{\pi} d \theta=\left.\frac{1}{\pi} \theta\right|_{\theta=0} ^{\theta=\pi}=\frac{\pi}{\pi}-\frac{0}{\pi}=1$
7. Consider the region R in the $x y$-plane bound by the curves $y=x^{2}$ and $y=6 x-8$. Let D be the solid lying above the region R and below the plane $z=x$.

Sect up:

The two curves intersect in the first quadrant:
Set $y=x^{2}$ and $y=6 x-8$ equal:

$$
\begin{aligned}
& x^{2}=6 x-8 \\
& x^{2}-6 x+8=0 \\
& (x-2)(x-4)=0 \quad x=2,4
\end{aligned}
$$

Sketch of R :

$$
y=6 x-8
$$

$$
y=x^{2}
$$

$(2,4)$
If 1 think of them as lower/upper bounds,

$$
\begin{aligned}
& \text { If } 1 \text { think of them } \\
& \text { I get } R=\left\{(x, y): 2 \leq x \leq 4, x^{2} \leq y \leq 6 x-8\right\} \text {. }
\end{aligned}
$$

So $\iint_{R} f(x, y) d A=\int_{2}^{4} \int_{x^{2}}^{6 x-8} f(x, y) d y d x$
7. Consider the region R in the $x y$-plane bound by the curves $y=x^{2}$ and $y=6 x-8$. Let D be the solid lying above the region R and below the plane $z=x$.
(a) Use the appropriate double integral to compute the volume of the solid D.

Because R lives in the $x y$-plane $(z=0)$, this phrase tells us D is bounded below by $z=0$.
This tells us D is bounded by $z=x$

$$
D=\left\{(x, y, z): 2 \leq x \leq 4, x^{2} \leq y \leq 6 x-8,0 \leq z \leq x\right\}
$$

a) Volume of D is $\iint_{R \underset{\text { upper lower }}{x-0} 4}^{x-0} d A=\int_{2}^{4} \int_{x^{2}}^{6 x-8} x d y d x$
inner $\int_{x^{2}}^{6 x-8} x d y=\left.x y\right|_{y=x^{2}} ^{y=6 x-8}=x\left(6 x-8-x^{2}\right)=6 x^{2}-8 x-x^{3}$
outer

$$
\begin{aligned}
& \int_{2}^{4} 6 x^{2}-8 x-x^{3} d x=\frac{6 x^{3}}{3}-\frac{8 x^{2}}{2}-\left.\frac{x^{4}}{4}\right|_{x=2} ^{x=4} \\
& \quad=2\left(4^{3}\right)-4\left(4^{2}\right)-\frac{4^{4}}{4}-\left[2\left(2^{3}\right)-4\left(2^{2}\right)-\frac{2^{4}}{4}\right]=4
\end{aligned}
$$

Volume of D is 4
(b) Use the appropriate triple integral to compute the volume of the solid D.
b) Volume of D is $\iiint_{D} 1 d V=\int_{2}^{4} \int_{x^{2}}^{6 x-8} \int_{0}^{x} 1 d z d y d x$
inner $\int_{0}^{x} 1 d z=\left.z\right|_{z=0} ^{z=x}=x \quad$ middle $\int_{x^{2}}^{6 x-8} x d y=6 x^{2}-8 x-x^{3}$ outer $\int_{2}^{4} 6 x^{2}-8 x-x^{3} d x=4$
same as in part (a)
(c) Find the average value of the function $f(x, y)=x$ over the region R.

Average value of $f(x, y)$ over the region R is

$$
\frac{1}{\text { area of } R} \iint_{R} f(x, y) d A \text {. }
$$

Area of R is $\iint_{R} 1 d A=\int_{2}^{4} \int_{x^{2}}^{6 x-8} 1 d y d x$
inner $\int_{x^{2}}^{6 x-8} 1 d y=\left.y\right|_{y=x^{2}} ^{y=6 x-8}=6 x-8-x^{2}$
outer

$$
\begin{aligned}
& \int_{2}^{4} 6 x-8-x^{2} d x=\frac{6 x^{2}}{2}-8 x-\left.\frac{x^{3}}{3}\right|_{x=2} ^{x=4} \\
& =3\left(4^{2}\right)-8(4)-\frac{4^{3}}{3}-\left[3\left(2^{2}\right)-8(2)-\frac{2^{3}}{3}\right]=\frac{4}{3}
\end{aligned}
$$

Area of R is $\frac{4}{3}$
$\iint_{R} f(x, y) d A$ for $f(x, y)=x$ is $\iint_{R} x d A=4$. We computed this in part (a).

So $\frac{1}{\text { area of } R} \iint_{R} f(x, y) d A=\frac{1}{\left(\frac{4}{3}\right)} 4=3$ is the average value of $f(x, y)=x$ over $R . \quad$ end of Q_{7}

Call this D_{1}
8. Consider the solid below the paraboloid $z=16-x^{2}-y^{2}$ and above the $x y$-plane. A cylindrical hole is cut through this solid using the cylinder $x^{2}+y^{2}=4$, resulting in a new solid D. Set up a double integral in polar coordinates for computing the volume of the solid D, then compute the volume.

Sketch D_{1} :
the paraboloid $z=x^{2}+y^{2}$ is

$z=-\left(x^{2}+y^{2}\right)$ is

the paraboloid $z=16-\left(x^{2}+y^{2}\right)$ is

$D_{1}=$ all points below $z=16-x^{2}-y^{2}$ and above the $x y$-plane $(z=0)$
The intersection of $z=16-x^{2}-y^{2}$ and $z=0$ is a circle C centered at the origin. To find this circle C, set $z=16-x^{2}-y^{2}$ and $z=0$ equal: $0=16-x^{2}-y^{2}$

$$
x^{2}+y^{2}=4^{2} \text { or } r=4 \quad \text { (circle with radius } 4 \text {) }
$$

So D_{1} is bounded below by the $\operatorname{dis} k R_{1}=\{(r, \theta): 0 \leq r \leq 4,0 \leq \theta \leq 2 \pi\}$ (in the $x y$-plane)
and D_{1} is bounded above by the surface

$$
z=16-\left(x^{2}+y^{2}\right) \text { or } z=16-r^{2}
$$

$$
D_{1}=\{(r, \theta, z): \underbrace{0 \leq r \leq 4,0 \leq \theta \leq 2 \pi}_{\text {disk } R_{1}}, \underset{x y \text {-plane }}{0} 0 \leq z \leq \underbrace{16-r^{2}}_{\substack{4 \\ \text { paraboloid }}}\}
$$

Call this D_{1}
8. Consider the solid below the paraboloid $z=16-x^{2}-y^{2}$ and above the $x y$-plane. A cylindrical hole is cut through this solid using the cylinder $x^{2}+y^{2}=4$, resulting in a new solid D. Set up a double integral in polar coordinates for computing/the volume of the solid D, then compute the volume. Call this D_{2}
D_{2} is the surface $x^{2}+y^{2}=4$ or

$$
r=2
$$

Cutting cylinder D_{2} through solid D_{1}

we get $D=\{(r, \theta, z): \underbrace{2 \leq y}_{\text {washer } R \quad 2 \leq r \leq 4,0 \leq \theta \leq 2 \pi}, \underset{\text { xp lane }}{0} 0 \leq z \leq \underbrace{16-r^{2}}_{\text {paraboloid }}\}$

$$
R=\{(r, \theta): 2 \leq r \leq 4,0 \leq \theta \leq 2 \pi\}
$$

Volume of $D=\iint_{R} \underbrace{\left(6-r^{2}\right)}_{\text {paraboloid }}-\prod_{x y \text {-plane }}^{0} d A=\int_{0}^{2 \pi} \int_{2}^{4}\left(16-r^{2}\right) r^{\frac{5}{r}} d r d \theta$
inner $\int_{2}^{4} 16 r-r^{3} d r=16 \frac{r^{2}}{2}-\left.\frac{r^{4}}{4}\right|_{r=2} ^{r=4}=8\left(4^{2}\right)-\frac{4^{4}}{4}-\left(8\left(2^{2}\right)-\frac{2^{4}}{4}\right)=36$
outer $\int_{0}^{2 \pi} 36 d \theta=36(2 \pi)=72 \pi$ is the volume of D.
9. Consider the solid D bound by the sphere $x^{2}+y^{2}+z^{2}=20$ and the paraboloid $z=x^{2}+y^{2}$ in the first octant. Set up a triple integral in cylindrical coordinates to compute the volume of this solid.

Sketch of the sphere $x^{2}+y^{2}+z^{2}=20$:
b $\frac{1}{4}$ of the upper hemisphere:

$$
z=\sqrt{20-\left(x^{2}+y^{2}\right)} \text { where } x \geqslant 0, y \geqslant 0
$$

sphere is $\sqrt{20}$ In cylindrical coordinates:

$$
z=\sqrt{20-r^{2}}
$$

Sketch of the paraboloid $z=x^{2}+y^{2}$: In cylindrical coordinates: $z=r^{2}$

Find the curve C where these two surfaces intersect: Set $r^{2}=\sqrt{20-r^{2}}$

$$
\begin{aligned}
& r^{4}=20-r^{2} \\
& r^{4}+r^{2}-20=0 \\
& \left(r^{2}+5\right)\left(r^{2}-4\right)=0 \\
& r^{2}=-5 \text { or } r^{2}=4
\end{aligned}
$$

This is the

$$
\text { (not possible) } r=2 \quad \text { and } \quad z=4
$$ equation for C

So the intersection C is the circle centered at $(0,0,4)$ with radius 2 , living in the plane $z=4$:

Con't \longrightarrow
9. Consider the solid D bound by the sphere $x^{2}+y^{2}+z^{2}=20$ and the paraboloid $z=x^{2}+y^{2}$ in the first octant. Set up a triple integral in cylindrical coordinates to compute the volume of this solid.

So the solid bounded by the upper hemisphere $z=\sqrt{20-r^{2}}$ and the paraboloid $z=r^{2}$ is

$$
\{(r, \theta, z): \underbrace{0 \leq r \leq 2,0 \leq \theta \leq 2 \pi}, r^{2} \leq z \leq \sqrt{20-r^{2}}\}
$$

disk centered at the origin with radius 2 , in the $x y$-plane

Since our solid D is in the first (positive octant), we require x and y to be nonnegative, so

$$
D=\{(r, \theta, z): \underbrace{0 \leq r \leq 2,0 \leq \theta \leq \frac{\pi}{2}}, r^{2} \leq z \leq \sqrt{20-r^{2}}\}
$$

disk centered at the origin
with radius 2 , in the $x y$-plane, first quadrant

Volume of D is $\iiint_{D} 1 d V=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{r^{2}} \underset{\text { extra) }}{20-r^{2}} d z d r d \theta$
end of $Q 9$
10. Let D be the top half of a ball of radius 3 centered at the origin. Find the average distance of points in D from the origin using the appropriate triple integral in spherical coordinates.

Hint: Set up a function $f(\rho, \varphi, \theta)$ which gives the distance of the point (ρ, φ, θ) to the origin. Then use the triple integral formula for the average of a function.

Sketch D:
ball of radius 3 centered at the origin:

$$
\begin{aligned}
& \left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 3^{2}\right\} \text { or } \\
& \{(p, \varphi, \theta): 0 \leq P \leq 3,0 \leq \varphi \leq \pi, 0 \leq \theta \leq 2 \pi\}
\end{aligned}
$$

rho phi theta
φ is the angle between the positive z-axis and the line from the origin to a point:

Since D is the top half of the ball, we need to restrict Q to be between 0 and $\frac{\pi}{2}$.
So $D=\left\{(P, \varphi, \theta): 0 \leq P \leq 3,0 \leq \varphi \leq \frac{\pi}{2}, 0 \leq \theta \leq 2 \pi\right\}$. $\rho^{2} \sin \varphi$ extra
inner $\int_{0}^{3} \rho^{2} d \rho=\left.\frac{\rho^{3}}{3}\right|_{\rho=0} ^{\rho=3}=\frac{3^{3}}{3}-0=9$
middle $\int_{0}^{\frac{\pi}{2}} q \sin \varphi d \varphi=-\left.9 \cos \varphi\right|_{\varphi=0} ^{\varphi=\frac{\pi}{2}}=-9\left(\cos \frac{\pi}{2}-\cos 0\right)=-9(-1)=9$
outer $\int_{0}^{2 \pi} q d \theta=9(2 \pi)=18 \pi$ is the volume of $D . \quad \operatorname{con}^{\prime} t \longrightarrow$
10. Let D be the top half of a ball of radius 3 centered at the origin. Find the average distance of points in D from the origin using the appropriate triple integral in spherical coordinates.

Hint: Set up a function $f(\rho, \varphi, \theta)$ which gives the distance of the point (ρ, φ, θ) to the origin. Then use the triple integral formula for the average of a function.
the distance of a point $P(\rho, \varphi, \theta)$ from the origin is ρ (by definition). So let $f(\rho, \varphi, \theta):=\rho$.

Average distance of points in D from the origin is average value of our function $f(\rho, \varphi, \theta)=\rho$ over D which is $\frac{1}{\text { volume of } D} \iiint_{D} f(\rho, \varphi, \theta) d V$.

In the previous page, volume of D was found to be 18π.

Now, compute $\iiint_{D} \rho d V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \rho \rho^{2^{2}} d \rho \sin ^{2} \varphi d \varphi d \theta$
inner $\int_{0}^{3} \rho^{3} d \rho=\left.\frac{\rho^{4}}{4}\right|_{\rho=0} ^{\rho=3}=\frac{3^{4}}{4}-0=\frac{81}{4}$
middle $\int_{0}^{\frac{\pi}{2}} \frac{81}{4} \sin \varphi d \varphi=-\left.\frac{81}{4} \cos \varphi\right|_{\varphi=0} ^{\varphi=\frac{\pi}{2}}=-\frac{81}{4}\left(\cos \frac{\pi}{2}-\cos 0\right)=-\frac{81}{4}(-1)=\frac{81}{4}$ outer $\int_{0}^{2 \pi} \frac{81}{4} d \theta=\frac{81}{4}(2 \pi)=\frac{81}{2} \pi=\iiint_{D} \rho d V$

$$
\frac{1}{\text { volume of } D} \iiint_{D} f(\rho, \varphi, \theta) d V=\frac{1}{(18 \pi)^{\frac{81}{2}} \pi}=\frac{9}{4}
$$

the average distance of points in D from the origin.
end of Q 10

