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Orbits, stabilizers, and fixed points
Suppose G acts on a set S . Pick a configuration s ∈ S . We can ask two questions
about it:

(i) What other states (in S) are reachable from s? (We call this the orbit of s.)

(ii) What group elements (in G) fix s? (We call this the stabilizer of s.)

Definition 2

Suppose that G acts on a set S (on the right) via φ : G → Perm(S).

(i) The orbit of s ∈ S is the set

Orb(s) = {s.φ(g) | g ∈ G} .

(ii) The stabilizer of s in G is

Stab(s) = {g ∈ G | s.φ(g) = s} .

(iii) An element s ∈ S is called a fixed point of the action if Orb(s) is of size one.
That is, the set of fixed points of the action is

Fix(φ) = {s ∈ S | s.φ(g) = s for all g ∈ G} .

Note that the orbits of φ are the connected components in the action diagram.
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Orbits, stabilizers, and fixed points
Let’s revisit Example 2:
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The orbits are the 3 connected components. There is only one fixed point of φ. The
stabilizers are:
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Observations?

Example 4: G = C2 = {e, g} and S = Z. Let G acts on S by x .φ(g) = −x .

Orb(0) = {0}, and the orbit of any other element x in S is the set {−x , x}.

Stab(0) = C2, but the stabilizer of any other element of S is {e}.

Fix(φ) = {0}.
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Orbits and stabilizers

Proposition 1

For any s ∈ S , the set Stab(s) is a subgroup of G .

Proof (outline) - see actual proof in video

To show Stab(s) is a group, we need to show three things:

(i) Contains the identity. That is, s.φ(e) = s.

(ii) Inverses exist. That is, if s.φ(g) = s, then s.φ(g−1) = s.

(iii) Closure. That is, if s.φ(g) = s and s.φ(h) = s, then s.φ(gh) = s.

You’ll do this on the homework.

Remark

The kernel of the action φ is the set of all group elements that fix everything in S :

Ker φ = {g ∈ G | φ(g) = e} = {g ∈ G | s.φ(g) = s for all s ∈ S} .

Notice that
Ker φ =

⋂
s∈S

Stab(s) .
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Lemma 1: Bijection between orbits and right cosets of the stabilizer

Lemma 1

For any group action φ : G → Perm(S), and any x ∈ S , There is a bijection f :
Orb(x)→ G/Stab(x).

Let’s look at our previous example to get some intuition for why this should be true.

Let x =

Then Stab(x) = 〈f 〉.
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G = D4 and H = 〈f 〉

Partition of D4 by the
right cosets of H :
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0 1

1 0
1 0

1 1
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Here, x .φ(g) = x .φ(k) iff g and k are in the same right coset of H in G .
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Theorem 1 (The Orbit-Stabilizer Theorem)

The following is a central result of group theory.

Orbit-Stabilizer theorem

For any group action φ : G → Perm(S), and any x ∈ S ,

|Orb(x)| · |Stab(x)| = |G | .

if G is finite.

Proof of Orbit-Stabilizer theorem

Since Stab(s) < G , Lagrange’s theorem tells us that

[G : Stab(x)]︸ ︷︷ ︸
number of cosets

· | Stab(x)|︸ ︷︷ ︸
size of subgroup

= |G |.

Thus, it suffices to show that |Orb(x)| = [G : Stab(x)].

By Lemma 1, there is a bijection between the elements of Orb(x) and the right
cosets of Stab(x).
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Proof of Lemma 1 part (i)
Lemma 1

For any group action φ : G → Perm(S), and any x ∈ S , there is a bijection f :
Orb(x)→ G/Stab(x).

Proof of Lemma, (i) defining f and showing that f is well-defined

Throughout, let H = Stab(x). We define f : Orb(x) → G/H as follows. If s ∈ Orb(x), then
there is g ∈ G such that s = x .φ(g) by def of Orb(x), and we define f (s) = Hg .

(i) First, we show that f is well-defined, independent of the choice of g ∈ G such that
x .φ(g) = s. We need to show: if two group elements both send x to s ∈ S, then the two
group elements are in the same coset.

Suppose g , k ∈ G both send x ∈ S to s ∈ S . This means:

x .φ(g) = x .φ(k) ⇒ (x .φ(g)).φ(k)−1 = (x .φ(k)).φ(k)−1

⇒ (x .φ(g)).φ(k−1) = (x .φ(k)).φ(k−1)

⇒ x .φ(gk−1) = x .φ(kk−1) since φ is a right group action

⇒ x .φ(gk−1) = x .φ(e)

⇒ x .φ(gk−1) = x (since φ sends e to the identity permutation)

⇒ gk−1 stabilizes x

⇒ gk−1 ∈ H (recall that H = Stab(x))

⇒ g ∈ Hk

⇒ Hg = Hk
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Proof of Lemma 1 part (ii) injectivity

Proof of Lemma (cont.), (ii) showing that f is injective

Suppose (a.) x1, x2 ∈ Orb(x) such that (b.) f (x1) = f (x2). By (a), there exist
g1, g2 ∈ G such that

x1 = x .φ(g1)

x2 = x .φ(g2),

with Hg1 = Hg2, due to (b). Then

hg1 = g2 for some h ∈ H = Stab(x). (1)

So

x2 = x .φ(g2)

= x .φ(hg1) by (1)

= (x .φ(h)).φ(g1) since φ is a right group action

= x .φ(g1) since x .φ(h) = x due to h ∈ H = Stab(x)

= x1.
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Proof of Lemma 1 part (iii) surjectivity

Proof of Lemma (cont.), (iii) showing that f is onto

(iii) Finally, we show that f is onto.
Let Hg1 ∈ G/H. Then let x1 := x .φ(g1), which means that x1 ∈ Orb(x). Then
f (x1) = Hg1.
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