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Quotients: via Cayley diagrams

Recall Q8 = {±1,±i ,±i ,±k} with ij = k, jk = i , ki = j , ji = −k, kj = −i , ik = −j .

Define the homomorphism φ : Q8 → V4 via φ(i) = v and φ(j) = h. Since Q8 = 〈i , j〉,
we can determine where φ sends the remaining elements:

φ(1) = e , φ(−1) = φ(i2) = φ(i)2 = v 2 = e ,

φ(k) = φ(ij) = φ(i)φ(j) = vh = r , φ(−k) = φ(ji) = φ(j)φ(i) = hv = r ,

φ(−i) = φ(−1)φ(i) = ev = v , φ(−j) = φ(−1)φ(j) = eh = h .

Note that Ker φ = {−1, 1}. Let’s see what happens when we quotient out by Ker φ:
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Do you notice any relationship between Q8/Ker(φ) and Im(φ)?
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The Fundamental Homomorphism Theorem

The following is one of the central results in group theory.

Fundamental homomorphism theorem (FHT)

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

The FHT says that every homomorphism can be decomposed into two steps: (i)
quotient out by the kernel, and then (ii) relabel the nodes via φ.
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Proof of the FHT

Fundamental homomorphism theorem

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

Proof

We will construct an explicit map i : G/Ker(φ) −→ Im(φ) and prove that it is an
isomorphism.

Let K := Ker(φ), and recall that G/K := {aK : a ∈ G}. Define

i : G/K −→ Im(φ) , i : gK 7−→ φ(g) .

• Show i is well-defined : We must show that if aK = bK , then i(aK) = i(bK).

Suppose aK = bK . We have

aK = bK =⇒ b−1aK = K =⇒ b−1a ∈ K .

By definition of b−1a ∈ Ker(φ),

1H = φ(b−1a) = φ(b−1)φ(a) = φ(b)−1 φ(a) =⇒ φ(a) = φ(b) .

By definition of i : i(aK) = φ(a) = φ(b) = i(bK). X
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Proof of FHT (cont.) [Recall: i : G/K → Im(φ) , i : gK 7→ φ(g)]

Proof (cont.)

• Show i is a homomorphism : We must show that i(aK · bK) = i(aK) i(bK).

i(aK · bK) = i(abK) (aK · bK := abK from Slides 3.5 “quotient groups”)

= φ(ab) (definition of i)

= φ(a)φ(b) (φ is a homomorphism)

= i(aK) i(bK) (definition of i)

Thus, i is a homomorphism. X

• Show i is surjective (onto) :

This means showing that for any element in the codomain (here, Im(φ)), that some
element in the domain (here, G/K) gets mapped to it by i .

Pick any φ(a) ∈ Im(φ). By defintion, i(aK) = φ(a), hence i is surjective. X
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Proof of FHT (cont.) [Recall: i : G/K → Im(φ) , i : gK 7→ φ(g)]

Proof (cont.)

• Show i is injective (1–1) : We must show that i(aK) = i(bK) implies aK = bK .

Suppose that i(aK) = i(bK). Then

i(aK) = i(bK) =⇒ φ(a) = φ(b) (by definition of the map i)

=⇒ φ(b)−1 φ(a) = 1H

=⇒ φ(b−1a) = 1H (φ is a homom.)

=⇒ b−1a ∈ K (definition of Ker(φ))

=⇒ b−1aK = K (aH = H ⇔ a ∈ H)

=⇒ aK = bK

Thus, i is injective. X

In summary, since i : G/K → Im(φ) is a well-defined homomorphism that is injective
(1–1) and surjective (onto), it is an isomorphism.

Therefore, G/K ∼= Im(φ), and the FHT is proven. �
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Consequences of the FHT

An alternative proof of Prop 1 part 3

If φ : G → H is a homomorphism, then Imφ < H.

A few special cases

If φ : G → H is an embedding, then Ker(φ) = {1G}. The FHT says that

Im(φ) ∼= G/{1G} ∼= G .

If φ : G → H is the map φ(g) = 1H for all h ∈ G , then Ker(φ) = G , so the FHT
says that

{1H} = Im(φ) ∼= G/G .

Let’s use the FHT to determine all homomorphisms φ : C4 → C3:

By the FHT, G/Ker φ ∼= Imφ < C3, and so | Imφ| = 1 or 3.

Since Ker φ < C4, Lagrange’s Theorem also tells us that |Ker φ| ∈ {1, 2, 4}, and
hence | Imφ| = |G/Ker φ| ∈ {1, 2, 4}.

Thus, | Imφ| = 1, and so the only homomorphism φ : C4 → C3 is the trivial one.
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What does “well-defined” really mean?

Recall that we’ve seen the term “well-defined” arise in different contexts:

a well-defined binary operation on a set G/N of cosets,

a well-defined function i : G/N → H from a set (group) of cosets.

In both of these cases, well-defined means that:

our definition doesn’t depend on our choice of coset representative.

Formally:

If N E G , then aN · bN := abN is a well-defined binary operation on the set
G/N of cosets, because

if a1N = a2N and b1N = b2N, then a1b1N = a2b2N.

The map i : G/K → H, where i(aK) = φ(a), is a well-defined homomorphism,
meaning that

if aK = bK , then i(aK) = i(bK) (that is, φ(a) = φ(b)) holds.

Whenever we define a map and the domain is a quotient, we must show it’s
well-defined.
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How to show two groups are isomorphic

The standard way to show G ∼= H is to construct an isomorphism φ : G → H.

When the domain is a quotient, there is another method, due to the FHT.

Useful technique

Suppose we want to show that G/N ∼= H. There are two approaches:

(i) Define a map φ : G/N → H and prove that it is well-defined, a homomorphism,
and a bijection.

(ii) Define a map φ : G → H and prove that it is a homomorphism, a surjection
(onto), and that Ker φ = N.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.

For example, each of the following are results for which (ii) works quite well:

Z/〈n〉 ∼= Zn;

Q∗/〈−1〉 ∼= Q+;

AB/B ∼= A/(A ∩ B) (assuming A,B E G);

G/(A ∩ B) ∼= (G/A)× (G/B) (assuming G = AB).
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Cyclic groups as quotients
Consider the following (normal) subgroup of Z:

12Z = 〈12〉 = {. . . ,−24,−12, 0, 12, 24, . . . }C Z .

The elements of the quotient group Z/〈12〉 are the cosets:

0 + 〈12〉 , 1 + 〈12〉 , 2 + 〈12〉 , . . . , 10 + 〈12〉 , 11 + 〈12〉 .

Number theorists call these sets congruence classes modulo 12. We say that two
numbers are congruent mod 12 if they are in the same coset.

Recall how to add cosets in the quotient group:

(a + 〈12〉) + (b + 〈12〉) := (a + b) + 〈12〉 .

“(The coset containing a) + (the coset containing b) = the coset containing a + b.”

It should be clear that Z/〈12〉 is isomorphic to Z12. Formally, this is just the FHT
applied to the following homomorphism:

φ : Z −→ Z12 , φ : k 7−→ k (mod 12) ,

Clearly, Ker(φ) = {. . . ,−24,−12, 0, 12, 24, . . . } = 〈12〉. By the FHT:

Z/Ker(φ) = Z/〈12〉 ∼= Im(φ) = Z12 .
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A picture of the isomorphism i : Z12 −→ Z/〈12〉 (from the VGT website)
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