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Quotient maps

Consider a homomorphism where more than one element of the domain maps to the
same element of the codomain (i.e., non-embeddings).

Here are some examples.

τ1 : Q8 → V4
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τ2 : Z10 → Z6

Non-embedding homomorphisms are called quotient maps (as we’ll see, they
correspond to our quotient process).
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Preimages

Definition

If φ : G → H is a homomorphism and h ∈ Im(φ) < H, define the preimage (often
called fiber) of h to be the set

φ−1(h) := φ−1({h}) = {g ∈ G : φ(g) = h} .

Observe in the previous examples that the preimages all had the same structure. This
always happens.
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The preimage of 1H ∈ H is called the kernel of φ, denoted Ker φ.
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Preimages

Observation

All preimages of φ have the same structure.

Sketch of proof

Pick two elements a, b ∈ φ(G), and let A = φ−1(a) and B = φ−1(b) be their
preimages.

Consider any path a1
p−→ a2 between elements in A. For any b1 ∈ B, there is a

corresponding path b1
p−→ b2. We need to show that b2 ∈ B.

Since homomorphisms preserve structure, φ(a1)
φ(p)−→ φ(a2). Since φ(a1) = φ(a2),

φ(p) is the trivial path.

Therefore, φ(b1)
φ(p)−→ φ(b2), i.e., φ(b1) = φ(b2), and so by definition, b2 ∈ B. �

Clearly, G is partitioned by preimages of φ. Additionally, we just showed that they all
have the same structure. (Sound familiar?)
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Preimages and kernels

Definition

The kernel of a homomorphism φ : G → H is the set

Ker(φ) := φ−1(e) = {k ∈ G : φ(k) = e} .

Recall

The preimage of the identity (i.e., K = Ker(φ)) is a subgroup of G .

Proof

Let K = Ker(φ), and take a, b ∈ K . We must show that K satisfies 3 properties:

Identity: φ(e) = e. X

Closure: φ(ab) = φ(a)φ(b) = e · e = e. X

Inverses: φ(a−1) = φ(a)−1 = e−1 = e. X

Thus, K is a subgroup of G . �

Note: All other preimages are left cosets of K .
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A homomorphism is injective iff its kernel is trivial
Prop 2

A group homomorphism φ : G1 → G2 is injective if and only if Ker(φ) = {e1}.

Proof:

Example 1 (Application of Prop 2): Determine all possible homomorphism
f : Z7 → Z12.

Answer: The only homomorphism in this case is the zero map. See Example 11.8 in
Judson’s textbook abstract.ups.edu/aata/section-group-homomorphisms.html

Example 2: The homomorphism from GL2(R)→ R∗ defined by the matrix
determinant. The kernel is the group SL2(R) of 2× 2 matrices with determinant 1.

See Example 11.6 in Judson’s textbook
abstract.ups.edu/aata/section-group-homomorphisms.html

Exercise: Show that det(AB) = det(A) det(B)

Example 3: If G is a group and g ∈ G , let f : Z→ G be the group homomorphism
defined by f (n) = gn. The kernel of f is trivial if the order of g is infinite. Otherwise,
the kernel is kZ where k is the order of g .

See Example 11.9 in Judson’s textbook
abstract.ups.edu/aata/section-group-homomorphisms.html
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Kernels are normal subgroups

Prop 3

If φ : G1 → G2 is a group homomorphism, then Ker(φ) is a normal subgroup of G1.

Proof

Let K = Ker(φ). We will show that if k ∈ K , then gkg−1 ∈ K for all g ∈ G1. Take
any g ∈ G1, and observe that

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g) · e · φ(g−1) = φ(g)φ(g)−1 = e .

Therefore, gkg−1 ∈ Ker(φ), so K E G1. �

See also Theorem 11.5 in Judson’s textbook
abstract.ups.edu/aata/section-group-homomorphisms.html

IMPORTANT OBSERVATION!

Given any homomorphism φ : G1 → G2, we can always form the quotient group

G1/Ker(φ).
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Example 4. Quotients: via multiplication tables

Recall that C2 = {e0πi , e1πi} = {1,−1}. Consider the following (quotient)
homomorphism:

φ : D4 −→ C2 , defined by φ(r) = 1 and φ(f ) = −1 .

Note that φ(rotation) = 1 and φ(reflection) = −1.

The quotient process of “shrinking D4 down to C2” can be clearly seen from the
multiplication tables.
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Example 5. Quotients: via Cayley diagrams

Define the homomorphism φ : Q8 → V4 via φ(i) = v and φ(j) = h. Since Q8 = 〈i , j〉,
we can determine where φ sends the remaining elements:

φ(1) = e , φ(−1) = φ(i2) = φ(i)2 = v 2 = e ,

φ(k) = φ(ij) = φ(i)φ(j) = vh = r , φ(−k) = φ(ji) = φ(j)φ(i) = hv = r ,

φ(−i) = φ(−1)φ(i) = ev = v , φ(−j) = φ(−1)φ(j) = eh = h .

Note that Ker φ = {−1, 1}. Let’s see what happens when we quotient out by Ker φ:
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Do you notice any relationship between Q8/Ker(φ) and Im(φ)?
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