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Quotient maps

Consider a homomorphism where more than one element of the domain maps to the
same element of the codomain (i.e., non-embeddings).

Here are some examples.

Tl:QS‘)VA :ZIO—)ZG

Non-embedding homomorphisms are called quotient maps (as we'll see, they
correspond to our quotient process).
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Preimages
Definition
If : G — H is a homomorphism and h € Im(¢) < H, define the preimage (often
called fiber) of h to be the set

¢~ (h) =9 ' ({h}) = {g € G: d(g) = h}.

Observe in the previous examples that the preimages all had the same structure. This
always happens.

Domain

The preimage of 14 € H is called the kernel of ¢, denoted Ker ¢.
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Preimages

Observation

All preimages of ¢ have the same structure.

Sketch of proof

Pick two elements a, b € ¢(G), and let A= ¢'(a) and B = ¢*(b) be their
preimages.

Consider any path a; =5 a, between elements in A. For any by € B, there is a
corresponding path by 2 b,. We need to show that b, € B.

Since homomorphisms preserve structure, ¢(az) “o) @(a2). Since ¢(a1) = ¢(a2),
@(p) is the trivial path.

Therefore, ¢(b1) @) o(b2), i.e., ¢(b1) = ¢(b2), and so by definition, b, € B. O

4

Clearly, G is partitioned by preimages of ¢. Additionally, we just showed that they all
have the same structure. (Sound familiar?)
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Preimages and kernels
Definition

The kernel of a homomorphism ¢: G — H is the set

Ker(p) := ¢ '(e) = {k € G : p(k) = e}.

Recall
m The preimage of the identity (i.e., K = Ker(¢)) is a subgroup of G.

Proof
Let K = Ker(¢), and take a, b € K. We must show that K satisfies 3 properties:

Identity: ¢(e) =e.
Closure: ¢(ab) = ¢(a)p(b) =e-e=e.
Inverses: p(a~ ) =¢(a) t=et=e

Thus, K is a subgroup of G.

Note: All other preimages are left cosets of K.
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A homomorphism is injective iff its kernel is trivial
Prop 2
A group homomorphism ¢ : Gi — G, is injective if and only if Ker(¢) = {e1}. J

Proof:

Example 1 (Application of Prop 2): Determine all possible homomorphism

f: L7 — L.

Answer: The only homomorphism in this case is the zero map. See Example 11.8 in
Judson’s textbook abstract.ups.edu/aata/section-group-homomorphisms.html

Example 2: The homomorphism from GL>(R) — R* defined by the matrix
determinant. The kernel is the group SL>(R) of 2 x 2 matrices with determinant 1.

See Example 11.6 in Judson's textbook
abstract.ups.edu/aata/section-group-homomorphisms.html

Exercise: Show that det(AB) = det(A) det(B)

Example 3: If G is a group and g € G, let f : Z — G be the group homomorphism
defined by f(n) = g". The kernel of f is trivial if the order of g is infinite. Otherwise,
the kernel is kZ where k is the order of g.
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Kernels are normal subgroups
Prop 3
If ¢ : Gi — G, is a group homomorphism, then Ker(¢) is a normal subgroup of Gi.

4

Proof

Let K = Ker(¢). We will show that if k € K, then gkg ™ € K for all g € G;. Take
any g € Gi, and observe that

dlgkg ™) = d(g) p(k) (g™ ") = d(g) - e d(g ™) = p(g)d(g) ' =e.
Therefore, gkg ="' € Ker(¢), so K < G;. 0

See also Theorem 11.5 in Judson's textbook
abstract.ups.edu/aata/section-group-homomorphisms.html

IMPORTANT OBSERVATION!

Given any homomorphism ¢: G — Gy, we can always form the quotient group

G1/ Ker()).
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Example 4. Quotients: via multiplication tables

Recall that G = {€°™, '™} = {1, —1}. Consider the following (quotient)
homomorphism:

¢: Dy — G, defined by ¢(r) =1 and ¢(f) = —1.
Note that ¢(rotation) = 1 and ¢(reflection) = —1.

The quotient process of “shrinking Dy down to G;"” can be clearly seen from the
multiplication tables.
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Example 5. Quotients: via Cayley diagrams

Define the homomorphism ¢ : Qs — V4 via ¢(i) = v and ¢(j) = h. Since Qg = (i, ),
we can determine where ¢ sends the remaining elements:

P(1) =e, p(—1) = p(i*) = ¢(i)’ =V’ =e,
(k) = ¢(ij) = ¢(I)p(j) = vh =, d(—k) = o(ji) = o(j)o(i) = hv = r,
B(—i) = p(—1)p(i) = ev = v, d(—j) = ¢(—1)¢(j) = eh = h.

Note that Ker ¢ = {—1,1}. Let's see what happens when we quotient out by Ker ¢:

Qs organized by the left cosets of K collapse cosets
subgroup K = (—1) are near each other into single nodes

Do you notice any relationship between Qg/ Ker(¢) and Im(¢)?
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