Direct products

If A and B are groups, there is a natural group structure on the set

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Definition

The **direct product** of groups A and B consists of the set $A \times B$, and the group operation is done componentwise: if $(a, b), (c, d) \in A \times B$, then

$$(a, b) * (c, d) = (ac, bd).$$

We call A and B the factors of the direct product.

Note that the binary operations on A and B could be different. One might be * and the other +.

For example, in $D_3 \times \mathbb{Z}_4$:

$$(r^{2}, 1) * (fr, 3) = (r^{2}fr, 1+3) = (rf, 0)$$

These elements do not commute:

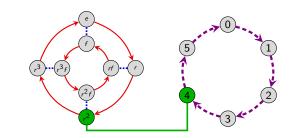
$$(fr, 3) * (r^2, 1) = (fr^3, 3+1) = (f, 0)$$

Direct products, visually

• One way to think of the direct product of two cyclic groups, say $\mathbb{Z}/n \times \mathbb{Z}/m$: Imagine a slot machine with two wheels, one with spaces numbered 0 through n-1, and the other with spaces numbered 0 through m-1.

The actions are: spin both of wheels. Each action can be labeled by where we end up on each wheel, say (i, j).

An example for a more general case: the element $(r^2, 4)$ in $D_4 \times \mathbb{Z}/6$.



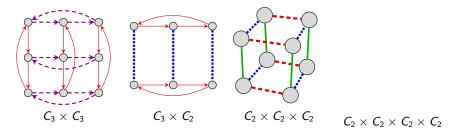
Key idea The direct product of two groups joins them so they act independently of each other.

Cayley diagrams of direct products

Remark

Just because a group is not written with \times doesn't mean it isn't secretly a direct product. Example: V_4 (rectangle puzzle) is really $C_2 \times C_2$ (two light switches).

Here are some examples of direct products:



Surprisingly, the group $C_3 \times C_2$ is isomorphic to the cyclic group C_6 ! The Cayley diagram for C_6 using generators r^2 and r^3 is the same as the Cayley diagram for $C_3 \times C_2$ above.

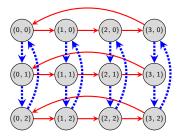
Cayley diagrams of direct products

Let e_A be the identity of A and e_B the identity of B.

Given a Cayley diagram of A with generators a_1, \ldots, a_k , and a Cayley diagram of B with generators b_1, \ldots, b_ℓ , we can create a Cayley diagram for $A \times B$ as follows:

- Vertex set: $\{(a, b) \mid a \in A, b \in B\}$.
- Generators: $(a_1, e_b), \ldots, (a_k, e_b)$ and $(e_a, b_1), \ldots, (e_a, b_\ell)$.

It is helpful to arrange the vertices in a rectangular grid. For example, here is a Cayley diagram for the group $\mathbb{Z}/4 \times \mathbb{Z}/3$:



Exercise: List all subgroups of $\mathbb{Z}/4\times\mathbb{Z}/3.$ Hint: There are six.

Subgroups of direct products

Proposition

If $H \leq A$, and $K \leq B$, then $H \times K$ is a subgroup of $A \times B$.

For $\mathbb{Z}/4 \times \mathbb{Z}/3$, all subgroups had this form. However, this is false in general!

Example when this is not true: Consider the group $\mathbb{Z}/2 \times \mathbb{Z}/2$, which is also V_4 . Since $\mathbb{Z}/2$ has two subgroups, the following four sets are subgroups of $\mathbb{Z}/2 \times \mathbb{Z}/2$:

 $\mathbb{Z}_2\times\mathbb{Z}_2,\qquad \{0\}\times\{0\},\qquad \mathbb{Z}_2\times\{0\}=\langle (1,0)\rangle,\qquad \{0\}\times\mathbb{Z}_2=\langle (0,1)\rangle.$

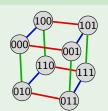
One subgroup of $\mathbb{Z}/2\times\mathbb{Z}/2$ is missing from this list: $\langle (1,1)\rangle = \{(0,0),(1,1)\}.$

Practice

What are the subgroups of $\mathbb{Z}/2\times\mathbb{Z}/2\times\mathbb{Z}/2?$

Here is a Cayley diagram, writing the elements of the product as abc rather than (a, b, c).

Hint: There are 16 subgroups! Check with Group Explorer.



 $A \times B$.

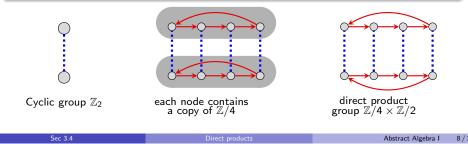
Direct products, visually

We can construct the Cayley diagram of a direct product using the following "inflation" method.

Inflation algorithm

To make a Cayley diagram of $A \times B$ from the Cayley diagrams of A and B:

- 1. Begin with the Cayley diagram for A.
- 2. Inflate each node of A, and place in each node a copy of the Cayley diagram for B.
- 3. Remove the (inflated) nodes of A while using the arrows of A to connect corresponding nodes from each copy of B. That is, remove the A diagram but treat its arrows as a blueprint for how to connect corresponding nodes in the copies of B.



Multiplication tables of direct products

Direct products can also be visualized using multiplication tables.

For example, we construct the table for the direct product $\mathbb{Z}/4 \times \mathbb{Z}/2$:

				0	1	
				1	0	
0	1	2	3	0	1	Ē
1	2	3	0	 1	0	
2	3	0	1	0	1	Γ
3	0	1	2	1	0	
				0	1	
				1	0	

1 0	1 0	1 0	1 0
0 1			0 1
1 0	1 0	1 0	1 0
0 1	0 1		0 1
1 0	1 0	1 0	1 0
0 1		0 1	
1 0	1 0	1 0	1 0
inflate ea	ach cell t	o conta	in a copy

of the multiplication table of Z

(<mark>0</mark> ,0)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(1 , 1)	(2, <mark>0</mark>)	(<mark>2</mark> ,1)	(<mark>3,0</mark>)	(<mark>3</mark> ,1)
(<mark>0</mark> ,1)	(<mark>0</mark> ,0)	(1,1)	(1, <mark>0</mark>)	(2,1)	(<mark>2,0</mark>)	(<mark>3</mark> ,1)	(<mark>3,0</mark>)
(1, <mark>0</mark>)	(<mark>1,1</mark>)	(<mark>2,0</mark>)	(2,1)	(<mark>3,0</mark>)	(<mark>3</mark> ,1)	(<mark>0,0</mark>)	(0,1)
(1 , 1)	(1, <mark>0</mark>)	(<mark>2,1</mark>)	(<mark>2,0</mark>)	(<mark>3</mark> ,1)	(<mark>3,0</mark>)	(<mark>0</mark> ,1)	(<mark>0,0</mark>)
(<mark>2,0</mark>)	(<mark>2,1</mark>)	(<mark>3,0</mark>)	(<mark>3</mark> ,1)	(<mark>0</mark> ,0)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(1 , 1)
(<mark>2</mark> ,1)	(<mark>2,0</mark>)	(<mark>3</mark> ,1)	(<mark>3,0</mark>)	(<mark>0</mark> ,1)	(<mark>0</mark> ,0)	(<mark>1</mark> ,1)	(1, <mark>0</mark>)
(<mark>3,0</mark>)	(<mark>3</mark> ,1)	(<mark>0</mark> ,0)	(<mark>0</mark> ,1)	(1, <mark>0</mark>)	(<mark>1</mark> ,1)	(<mark>2,0</mark>)	(<mark>2</mark> ,1)
(<mark>3</mark> ,1)	(<mark>3,0</mark>)	(<mark>0</mark> ,1)	(<mark>0,0</mark>)	(1 , 1)	(1, <mark>0</mark>)	(<mark>2,1</mark>)	(<mark>2,0</mark>)

join the little tables and element names to form the table for $\mathbb{Z}/4\!\times\!\mathbb{Z}/2$

Properties of direct products

Recall the following important definition

A subgroup $H \leq G$ is normal if xH = Hx for all $x \in G$. We denote this by $H \leq G$.

Observation

If A and B are not trivial, the direct product $A \times B$ has at least 4 normal subgroups:

 $\{e_A\} \times \{e_B\},$

 $A \times \{e_B\}, \qquad \{e_A\} \times B,$

Proof:

Sometimes we "abuse notation": write $A \trianglelefteq A \times B$ to mean $A \times \{e_B\} \trianglelefteq A \times B$ and

write $B \trianglelefteq A \times B$ to mean $\{e_A\} \times B \trianglelefteq A \times B$.

(Technically, A and B are not even subsets of $A \times B$.)

Observation

In a Cayley diagram for $A \times B$, any arrow from A commutes with any arrow from B. Algebraically, this is saying that $(a, e_b) * (e_a, b) = (a, b) = (e_a, b) * (a, e_b)$ for all elements $a \in A, b \in B$. multipl. table

for $\mathbb{Z}/4$