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Overview

In this section, we will introduce 5 families of groups:

1. cyclic groups

2. abelian groups

3. dihedral groups

4. symmetric groups

5. alternating groups

This lecture is focused on the last two families: symmetric groups and alternating
groups.

A symmetric group is the collection of all n! permutations of n objects.

We will study permutations, and how to write them concisely in cycle notation.

Cayley’s theorem tells us that every finite group is isomorphic to a collection of
permutations (i.e., a subgroup of a symmetric group).
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Symmetric groups

Definition

A permutation is an action that rearranges a collection of objects.

For convenience, we will usually refer to permutations of positive integers (just like
we did when we numbered our rectangle, etc.).

There are many ways to represent permutations, but we will start with the notation
illustrated by the following example.

Example

Here are some permutations of 4 objects.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Sec 2.3 Symmetric and alternating groups Abstract Algebra I 3 / 15



Combining permutations
In order for the set of permutations of n objects to form a group (what we want!),
we need to understand how to combine permutations.

Example:

What should
1 2 3 4

followed by

1 2 3 4

be equal to?

The first permutation rearranges the 4 objects, and then we shuffle the result
according to the second permutation:

1 2 3 4 ∗ 1 2 3 4 = 1 2 3 4

Remember to read from left to right!
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Groups of permutations

Fact

There are n! = n(n − 1) · · · 3 · 2 · 1 permutations of n items.

For example, there are 4! = 24 “permutation pictures” on 4 objects.

The collection of permutations of n items forms a group!

To verify this, we just have to check that the appropriate rules of one of our
definitions of a group hold.

How do we find the inverse of a permutation? Just reverse all of the arrows in the
permutation picture. For example, the inverse of

1 2 3 4

is simply

1 2 3 4
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The symmetric group

Definition

The group of all permutations of n items is called the symmetric group (on n
objects) and is denoted by Sn.

We’ve already seen the group S3, which happens to be the same as the dihedral
group D3, but this is the only time the symmetric groups and dihedral groups
coincide. (Why?)

Although the set of all permutations of n items forms a group, creating a group does
not require taking all permutations.

If we choose carefully, we can form groups by taking a subset of the permutations.

For example, the cyclic group Cn and the dihedral group Dn can both be thought of
groups of certain permutations of {1, . . . , n}. (Why? Do you see which permutations
they represent?)

Sec 2.3 Symmetric and alternating groups Abstract Algebra I 6 / 15



Cycle notation for Sn

We can concisely describe the permutation

1 2 3 4 as (1 2 3 4).

This is called cycle notation.

Observation 1

Every permutation can be decomposed into a product of disjoint cycles.

For example, in S10, we can write

1 2 3 4 5 6 7 8 9 10 as (1 4 6 5) (2 3) (8 10 9).

Observation 2

Disjoint cycles commute.

For example: (1 4 6 5) (2 3) (8 10 9) = (2 3) (8 10 9) (1 4 6 5).
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Cycle notation for Sn

Example

Consider the following permutations in S4:

1 2 3 4 is (1 2) (3 4)

1 2 3 4 is (2 3)

1 2 3 4
is (1 3) (2 4)

1 2 3 4 is (1 3 2)

Remark

It doesn’t matter “where we start” when writing the cycle. In the last example above,

(1 3 2) = (3 2 1) = (2 1 3) = (1 2) (2 3) = (1 2) (2 3) (2 3) (2 3) .
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Composing permutations in cycle notation

Recall how we combined permutations:

1 2 3 4 ∗ 1 2 3 4 = 1 2 3 4

In cycle notation, this is

(1 2 3 4) ∗ (1 3) (2 4) = (1 4 3 2) .

We read left-to-right. (Caveat: some books use the right-to-left convention as in
function composition.)

Do you see how to combine permutations in cycle notation? In the example above,
we start with 1 and then read off:

“1 goes to 2, then 2 goes to 4”; Write: (1 4

“4 goes to 1, then 1 goes to 3”; Write: (1 4 3

“3 goes to 4, then 4 goes to 2”; Write: (1 4 3 2

“2 goes to 3, then 3 goes to 1”; Write: (1 4 3 2)

In this case, we’ve used up each number in {1, . . . , n}. If we hadn’t, we’d take the
the smallest unused number and continue the process with a new (disjoint) cycle.
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Transpositions

A transposition is a permutation that swaps two objects and fixes the rest, e.g.:

1 2 · · · i − 1 i i+1 · · · j−1 j j+1 · · · n−1 n

In cycle notation, a transposition is just a 2-cycle, e.g., (i j).

Theorem

The group Sn is generated by transpositions.

Intuitively, this means that every permutation can be constructed by successively
exchanging pairs of objects.

In other words, if n people are standing in a row, and we want to rearrange them in
some other order, we can always do this by successively having pairs of people swap
places.

In fact, we only need adjacent transpositions to generate Sn:

Sn =
〈

(1 2) , (2 3) , . . . , (n − 1 n)
〉
.
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Transpositions and the alternating groups

Remark

Even though every permutation in Sn can be written as a product of transpositions,
there may be many ways to do this.

For example:

(1 3 2) = (1 2) (2 3) = (1 2) (2 3) (2 3) (2 3) = (1 2) (2 3) (1 2) (1 2).

Theorem

The parity of the number of transpositions of a fixed permutation is unique.

That is, a fixed permutation can either be written with an even number of
transpositions, or an odd number of transpositions, but not both!

We thus have a notion of even permutations and odd permutations.

Theorem

Exactly half of the permutations in Sn are even, and they form a group called the
alternating group, denoted An.
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Practice

At this point, it helps to “get your hands dirty” and try a few examples. Here are
some good exercises.

1. Write the following products of permutations into a product of disjoint cycles:

(1 2 3) (1 2 3 4) in S4

(1 6) (1 2 4 5) (1 6 4 2 5 3) in S6.

Let G = S3, the symmetric group on three objects. This group has six elements.

2. Do the following for each element in S3:

Draw its “permutation picture.”

Write it as a product of disjoint transpositions (that is, using only (1 2),
(2 3), and (1 3)).

Write it as a product of disjoint adjacent transpositions (that is, using only
(1 2) and (2 3)).

Determine whether it is even or odd.

3. Now, write down the alternating group A3. This is the group consisting of only
the even permutations. What familiar group is this isomorphic to?
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Alternating groups

How can we verify that An a group?

The only major concern is it must be closed under combining permutations (all other
necessary properties are inherited from Sn).

Do you see why combining two even permutations yields an even permutation?

Interesting fact

For n ≤ 5, the group An consists precisely of the set of “squares” in Sn. By “square,”
we mean an element that can be written as an element of Sn times itself.

For example, the permutation 1 2 3 is a square in S3, because:

1 2 3 ∗ 1 2 3 = 1 2 3

In cycle notation, this is (1 3 2) = (1 2 3) (1 2 3).

Note that An has order
n!

2
.
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Platonic solids
The symmetric groups and alternating groups arise throughout group theory. In
particular, the groups of symmetries of the 5 Platonic solids are symmetric and
alternating groups.

A 3-dimensional Platonic solid is a polytope with regular polygons as faces where all
angles are equal and all sides are equal. There are only five 3-dimensional platonic
solides:

The groups of symmetries of the Platonic
solids are as follows:

shape group
Tetrahedron A4

Cube S4

Octahedron S4

Icosahedron A5

Dodecahedron A5
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Platonic solids

The Cayley diagrams for these 3 groups can be arranged in some very interesting
configurations.

In particular, the Cayley diagram for Platonic solid ‘X ’ can be arranged on a
truncated ‘X ’, where truncated refers to cutting off some corners.

For example, here are two representations for Cayley diagrams of A5. At left is a
truncated icosahedron and at right is a truncated dodecahedron.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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