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The formal definition of a group (Binary operations)

An operation is a method for combining objects. For example, +, −, ·, and ÷. In
fact, these are binary operations because they combine two objects into a single
object.

Definition

If ∗ is a binary operation on a set S , then s ∗ t ∈ S for all s, t ∈ S . In this case, we
say that S is closed under the operation ∗.

Remarks:

Combining two group elements (i.e., doing one action followed by the other) is a
binary operation. We say that it is a binary operation on the group.

Recall that Rule 4 (from the first lecture) says that any sequence of actions is an
action. This ensures that the group is closed under the binary operation.

Note: Multiplication tables depict the group’s binary operation in full.

Warning: Not every table with symbols in it is going to be the multiplication
table for a group.
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The formal definition of a group (Associativity)

An operation is called associative if parentheses are permitted anywhere, but required
nowhere.

For example, ordinary addition and multiplication on multiplications are
associative.

However, subtraction of integers is not associative:

4− (1− 2) 6= (4− 1)− 2.

Example

Give a set and an associative binary operation.

Give a set and a non-associative binary operation.
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The formal definition of a group (Associativity)

Question: Is the operation of combining actions in a group associative?

Recall D3, the group of symmetries for the equilateral triangle, generated by r
(=rotate) and f (=horizontal flip).

Are the following equal?
rfr , (rf )r , r(fr)

Even though we are associating differently, the end result is that the actions are
applied left to right.

Upshot: We never need parentheses when working with groups, though we may use
them for emphasis.
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The formal definition of a group

Definition (official)

A set G together with a binary operation ∗ is a group if the following are satisfied:

The binary operation ∗ is associative.

There is an identity element e ∈ G . That is, e ∗ g = g = g ∗ e for all g ∈ G .

Every element g ∈ G has an inverse, g−1, satisfying g ∗ g−1 = e = g−1 ∗ g .

Remarks

Depending on context, the binary operation may be denoted by ∗, · , +, ◦, and
more.

As with ordinary multiplication, we frequently omit the symbol altogether and
write, e.g., xy for x ∗ y .

We generally only use the + symbol if the group is abelian. Thus, g + h = h + g
(always), but in general, gh 6= hg . E.g. matrix addition vs multiplication.

Uniqueness of the identity and inverses is not built into the definition of a group,
but we can prove these properties.
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Examples and non-examples of groups (Part I)

Which of these is a group? It it is a group, give the identity element. If it is not a
group, give an explicit reason for why it fails to be a group.

1. All integers Z under addition + is a group. The identity element is 0. Some
possible minimal generating sets are {1}, {−1}, {4, 5}, and {7, 12}. (But note
that {9, 12} is not a generating set.)

2. All integers Z under multiplication x is not a group. It satisfies associativity and
it has an identity element (1) but not every element has an inverse, for example,
there is no integer z such that 5z = 1.

3. All positive integers under addition.

4. All positive integers under multiplication.

5. All rational numbers Q under addition.

6. All rational numbers Q under multiplication.
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Examples and non-examples of groups (Part II)

Which of these is a group? It it is a group, give the identity element. If it is not a
group, give an explicit reason for why it fails to be a group.

1. All nonzero rational numbers Q∗ under addition.

2. All nonzero rational numbers Q∗ under multiplication.

3. All 2× 2 matrices (with real number entries) under addition.

4. All nonzero 2× 2 matrices (with real number entries) under multiplication.

5. All 2× 2 matrices (with real number entries) which has determinant 1, under
multiplication.
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Uniqueness of inverses
Theorem

Every element of a group has a unique inverse.

Proof

Let g be an element of a group G . By definition, it has at least one inverse.

Suppose that h and k are both inverses of g . This means that gh = hg = e and
gk = kg = e. (It will suffice to show that h = k.) Indeed,

h = he

= h(gk)

= (hg)k

= ek

= k .

Theorem (HW)

Every group has a unique identity element.

You can use a similar technique for the proof.
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Uniqueness of the identity (taken from HW)

Theorem (HW)

Every group has a unique identity element.

(Instruction: Only use the definition of a group. Don’t use other facts)

Proof

By definition, G has at least one identity. Suppose that . . .

�
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