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The formal definition of a group (Binary operations)

An operation is a method for combining objects. For example, +, —, -, and +. In
fact, these are binary operations because they combine two objects into a single
object.

Definition

If * is a binary operation on a set S, then sxt € S for all s,t € S. In this case, we
say that S is closed under the operation .

Remarks:

m Combining two group elements (i.e., doing one action followed by the other) is a
binary operation. We say that it is a binary operation on the group.

m Recall that Rule 4 (from the first lecture) says that any sequence of actions is an
action. This ensures that the group is closed under the binary operation.

m Note: Multiplication tables depict the group's binary operation in full.

m Warning: Not every table with symbols in it is going to be the multiplication
table for a group.
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The formal definition of a group (Associativity)

An operation is called associative if parentheses are permitted anywhere, but required
nowhere.

m For example, ordinary addition and multiplication on multiplications are
associative.

m However, subtraction of integers is not associative:

4—(1-2)#(4-1)-2

Example

m Give a set and an associative binary operation.

m Give a set and a non-associative binary operation.
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The formal definition of a group (Associativity)

Question: Is the operation of combining actions in a group associative?

Recall D3, the group of symmetries for the equilateral triangle, generated by r
(=rotate) and f (=horizontal flip).

Are the following equal?
rfr, (rf)r, r(fr)

Even though we are associating differently, the end result is that the actions are
applied left to right.

Upshot: We never need parentheses when working with groups, though we may use
them for emphasis.
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The formal definition of a group

Definition (official)
A set G together with a binary operation * is a group if the following are satisfied:

m The binary operation * is associative.

m There is an identity element e € G. Thatis, exg=g=g=xe forall g € G.

m Every element g € G has an inverse, g1, satisfying gxg ' =e=g ! xg.
Remarks
m Depending on context, the binary operation may be denoted by %, -, 4+, o, and
more.

m As with ordinary multiplication, we frequently omit the symbol altogether and
write, e.g., xy for x x y.

m We generally only use the + symbol if the group is abelian. Thus, g+ h=h+g
(always), but in general, gh # hg. E.g. matrix addition vs multiplication.

m Uniqueness of the identity and inverses is not built into the definition of a group,
but we can prove these properties.
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Examples and non-examples of groups (Part 1)
Which of these is a group? It it is a group, give the identity element. If it is not a

group, give an explicit reason for why it fails to be a group.

1. All integers Z under addition + is a group. The identity element is 0. Some
possible minimal generating sets are {1}, {—1}, {4,5}, and {7,12}. (But note
that {9,12} is not a generating set.)

2. All integers Z under multiplication x is not a group. It satisfies associativity and
it has an identity element (1) but not every element has an inverse, for example,
there is no integer z such that 5z = 1.

3. All positive integers under addition.
4. All positive integers under multiplication.
5. All rational numbers Q under addition.

6. All rational numbers Q under multiplication.
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Examples and non-examples of groups (Part Il)

Which of these is a group? It it is a group, give the identity element. If it is not a
group, give an explicit reason for why it fails to be a group.

1. All nonzero rational numbers Q* under addition.

2. All nonzero rational numbers Q* under multiplication.

3. All 2 x 2 matrices (with real number entries) under addition.

4. All nonzero 2 x 2 matrices (with real number entries) under multiplication.

5. All 2 x 2 matrices (with real number entries) which has determinant 1, under
multiplication.
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Uniqueness of inverses
Theorem

Every element of a group has a unique inverse.

Proof
Let g be an element of a group G. By definition, it has at least one inverse.
Suppose that h and k are both inverses of g. This means that gh = hg = e and
gk = kg = e. (It will suffice to show that h = k.) Indeed,
h = he

= h(gk)

= (hg)k

= ek

=k.

Theorem (HW)

Every group has a unique identity element.

You can use a similar technique for the proof.
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Uniqueness of the identity (taken from HW)
Theorem (HW) J

Every group has a unique identity element.

(Instruction: Only use the definition of a group. Don’t use other facts)

Proof
By definition, G has at least one identity. Suppose that ...

O
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