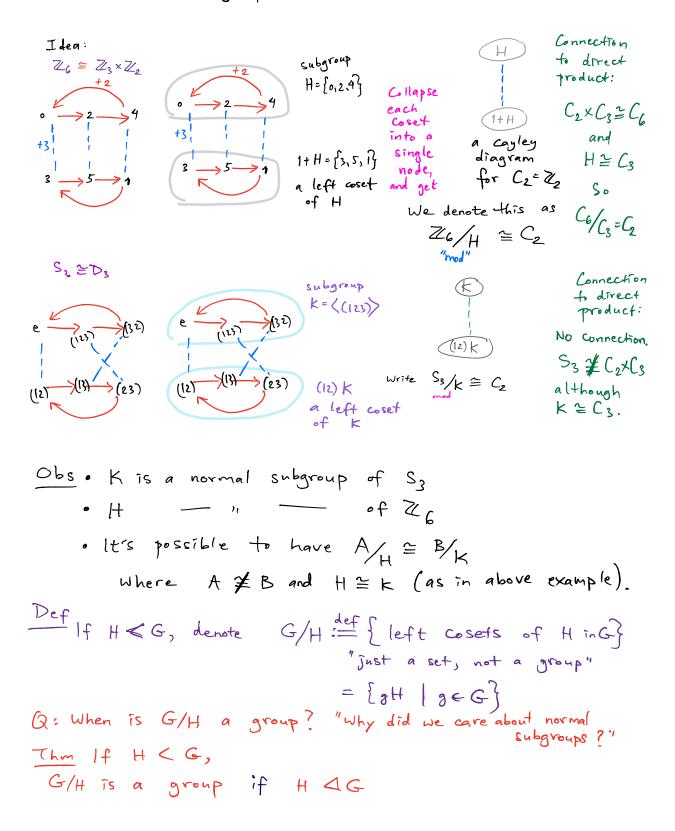
Sec 3.5 Quotient groups



Step 1: Define a binary operation on
$$G/H$$

If att, btt $\in G/H$, define
 $att \cdot bt := abtt$
Step 2: Verify that this def is well-defined,
meaning it doesn't depend on our choice of
coset verresentative.
Need to show: if $H \triangleleft G$,
if $a_1H = a_2H$ and $b_1H = b_2H$, then
 $a_1H \cdot b_1H = a_2H \cdot b_2H$
Think 6 suff: $= a_1b_1H$ by def
Think 6 sec
 $= a_1Hb_2$ since $b_1H = b_2H$ by assumption
 a_2b_2H at
 $= a_2Hb_2$ since $H \triangleleft G$ by assumption
 $= a_2b_2H$ since $H \triangleleft G$ by assumption
 $= a_2b_1 + b_2H$ by def
Step 3: Verify the 3 properties of a orp.
Identify: H is the identity eft in G/H
 $= aH \cdot BH = aH = aH$
 $H \cdot BH = aH = aH = H$
 $H \cdot BH = aH = aH = H$
 $H \cdot BH = aH = aH = H$
 $H \cdot BH = aH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = H$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$
 $H \cdot BH = AH = AH = AH$

$$Q$$
: If $H \triangleleft G$, $K \triangleleft G$, and $H \cong K$,
are $G/H \cong G/K$?

 $\frac{E_{X}}{E} G \mathbb{Z}_{4} \times \mathbb{Z}_{2}$

Note: G is abelian, so every subgroup is normal t you can always fake quotient

^{ron}(3,0) E Zy X Zz 50 = 20 00 01 ≥/≀ >∕1 31

"The quotient of ZyxZ2 by "Z(01)" is Zy×Ze/ has the Cayley diagram

(1.0)+ (210)y (3-0)+ H H H H

Start here on Friday Week 8

$$Z_{4} \times Z_{2} / \langle (2,0) \rangle \stackrel{K = \langle (2,0) \rangle}{=} \begin{cases} \langle (2,0) \rangle & (0,0) \rangle \\ = \{ (2,0), (0,0) \rangle & (1,0) \rangle \\ (1,0), (1,0) \rangle & (2,0) \rangle \end{cases} \stackrel{(1,0)}{=} \{ (2,1), (6,0) \} \begin{cases} \langle (3,0), (4,0) \rangle \\ (1,0), (4,0) \rangle \\ (1,0) \rangle & (1,0) \rangle \end{cases}$$
Has the same structure since order 2
as $V_{4} \not\equiv C_{4}$ $(1p)+K+(1,0)+K=$
 $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$
 $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$
 $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$ $(2x_{0})+K=$
 $(2x_{0})+K=$ $(2x_{0$