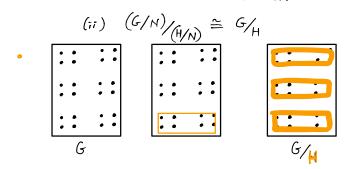
Sec 3 The 3rd Isomorphism Thm

· Statement:

Let N and H be normal subgroups of G, with N < H. Then (i) The quotient group H/N is normal in G/N



• Define
$$\varphi: G/N \longrightarrow G/H$$
 by $gN \longmapsto gH$

4 Prove that
$$\varphi$$
 is a homomorphism:
We need to show that $\varphi(aN \cdot bN) = \varphi(aN) \varphi(bN)$ for all aN , $bN \in G/N$.
 $\varphi(aN \cdot bN) = \varphi(abN)$ by def of binary operation in
guotient group G/N
 $= abH$ by def of φ
 $= aH \cdot bH$ by def of binary operation in
guotient group G/H .
 $= \varphi(aN) \varphi(bN)$

1 and 5
Prove (1) H/N & G/N:
We will first show that H/N = ker (9) and apply the theorem
which says that the kernel of every homomorphism f is
a normal subgrap of the domain of f.
Recall that H/N of Eleft costs of N in H] =
$$[x N | x \in H]$$
.
To show that H/N of ker (9), note that
if h (1), then Q (hN) = hH
 $= H$, common of Q
which is the identity element in the quotient of W (2)
To show that ker (9) C H/N,
Suppose x (G) where $G(xN) = H$.
But $G(xN) = xH$ by def of Q, so $xH = H$.
So $x \in H$.
So $x \in H$.
Since ker (Q) = H/N.
Since ker (Q) = M/N.
Suppose $xH \in G/H$ is surjective:
 $gN \mapsto gH$
Suppose $xH \in G/H$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in G/N$ is a left cost of H in G.
Then $xN \in H/N$, G/N is a left cost of H in G.
Then $xN \in H/N$, G/N is a left cost of H in G.
Then $xN \in H/N$, is a left cost of H in G.
Then $xN \in H/N$, is a left cost of H in G.
Then $xN \in H/N$, is a left cost of H in G.
Then $xN \in H/N$, is a left cost of H in G.
Then $xN \in H/N$, is a left cost of H in G.
Since ker Q = H/N, we have (G/N) (H/N) $\cong G/H$.